Accelerating Research to Commercial Outcomes
Faraday Institution has a mission to not only sponsor fundamental world-class battery research, but to develop resulting discoveries into technologies with significant impacts on the competitive advantage of the British manufacturing industry.
The Institution does this by actively promoting novel means of translating the results of university battery research into technological advance, undertaking activities that go well beyond the remit of a standard research organisation.
Industry Partners
The Faraday Institution has developed collaborative links with more than 85 industrial partners in the automotive, aerospace, battery, and materials sectors, working in collaborative relationships that help to identify application needs as we continue to reshape our research programmes.
Contact us if you are an industry organisation looking to collaborate.
TSCAN Methodology
The Faraday Institution has developed an analytical methodology to assess early-stage commercialisation potential for each of its research projects. The assessment results in a bespoke approach to commercialisation tailored to each project, the prioritisation of limited resources and the development of consortia that are investment ready. The process has substantial input and support of the academic research teams and industrial partners (where relevant). The assessment is made up of the five components: Technology, Significance, Competition, Action and Investment. The methodology continues to change and develop.
For more details see Faraday Insight 13.
Commercialising Modelling Research
As an example of the innovative commercialisation routes the commercialisation team is pursuing, the Faraday Institution has launched the Battery Parameter eXchange (BPX). This open standard supports the wider adoption of ‘industrial strength’ physics-based modelling globally across the battery industry. This chosen route to deliver industry impact from the Multi-scale Modelling project was derived after detailed conversations with a variety of a battery-based system developers around the benefits and challenges they face.
A standard in this sector will:
- Streamline the process of creating and using accurate physics-based models so that industry can exploit the advantages it can deliver (for example, as a virtual prototyping tool, to optimise battery management systems, and to offer insight on warranty provision);
- Accelerate the formation of a competitive supply chain in model creation, analysis tools and methodology support, which can reduce overall costs for industry;
- Increase the market size for physics-based modelling thereby stimulating more innovation and investment.
Successful open standards are steered and maintained by their users working together to mutual advantage in a standards body. Therefore, the commercialisation team is planning to form such a body in 2023, which will be led by industrial users to ‘own’ the roadmap for BPX and any subsequent related standards.
STEPS Programme
The Faraday Institution is working with partners on the Interreg North-West Europe (NWE) STEPS programme to strengthen the competitiveness of innovative storage providers by using a user-centric, demand-driven approach to bring products closer to market. STEPS aims to drive down the time energy storage SMEs typically spend on technology demonstration before reaching market maturity from an average of 5 years to 1-2, while maintaining maximum commercial usability.