Scientific Publications

Research from the Faraday Institution’s programme is internationally recognised as a mark of excellence. Scientific discoveries have led to highly cited publications, a suite of patents, and commercial spin outs. Since its inception, the Faraday Institution has contributed over 642 publications to the scientific literature, more than 50 of which represent collaborative work across Faraday Institution research projects.

The following statistical data derives from the SciVal record from April 2018 through November 2022, which recognises 590 papers and 1865 authors. 85.1% of publications are in Open Access journals. Almost half of the published research coming out of the Faraday Institution has international collaborators, spanning over 343 institutions, 35 countries and 6 continents. Key countries that collaborate most frequently with the Faraday Institution include the USA, China, Germany, France, Sweden, South Korea and Spain in that order.

Faraday Institution publications are of measurably high quality. 92.8% appear in the top quartile journals, with 63.6% in the top 10% of journals. Notably, 43.9% fall into the top 10% most cited publications worldwide, which serves to raise the UK average Field-Weighted Citation Impact (FWCI) in the research domains in which the Faraday Institution operates (chemistry, materials science, energy, physics, chemical engineering, engineering, environmental science). Faraday Institution publications have 10421 overall citations, with 17.7 citations per publication on average. In the UK, research in 2022 carries a FWCI of 1.56. Faraday Institution research is on target to be ahead of this with a FWCI of 2.25.

A full list of publications to November 2022 can be found here.

Lithium-ion 

Lithium Ion 

Battery Degradation 

Structure-property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes; Laveda, J.V.; Johnston, B.; Paterson, G.W.; Baker, P.J.; Tucker, M.G.; Playford, H.Y.; Jensen, K.M.O.; Billinge, S.J.L.; Corr, S.A.; Journal of Materials Chemistry A (Dec 2017); https://doi.org/10.1039/c7ta04400c

In-Situ Electrochemical SHINERS Investigation of SEI Composition on Carbon-Coated Zn0.9Fe0.1O Anode for Lithium-Ion Batteries; Cabo-Fernandez, L.; Bresser, D.; Braga, F.; Passerini, S.; Hardwick, L.J.; Batteries and Supercaps (Sept 2018); https://doi.org/10.1002/batt.201800063

Evolution of electrochemical cell designs for in-situ and operando 3D characterization; Tan, C.; Daemi, S.R.; Taiwo, O.O.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R.; Materials (Nov 2018); https://doi.org/10.3390/ma11112157

Partially Neutralized Polyacrylic Acid/Poly(vinyl alcohol) Blends as Effective Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries; Huang, Q.; Wan, C.; Loveridge, M.; Bhagat, R.; ACS Applied Energy Materials (Nov 2018); https://doi.org/10.1021/acsaem.8b01277

4D visualisation of: In situ nano-compression of Li-ion cathode materials to mimic early stage calendering; Daemi, S.R.; Lu, X.; Sykes, D.; Behnsen, J.; Tan, C.; Palacios-Padros, A.; Cookson, J.; Petrucco, E.; Withers, P.J.; Brett, D.J.L.; Shearing, P.R.; Materials Horizons (Dec 2018); https://doi.org/10.1039/c8mh01533c (See also MSM)

Three-dimensional pulsed field gradient NMR measurements of self-diffusion in anisotropic materials for energy storage applications; Engelke, S.; Marbella, L.E.; Trease, N.M.; De Volder, M.; Grey, C.P.; Physical Chemistry Chemical Physics (Jan 2019); https://doi.org/10.1039/c8cp07776b

Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells; Finegan, D.P.; Darst, J.; Walker, W.; Li, Q.; Yang, C.; Jervis, R.; Heenan, T.M.M.; Hack, J.; Thomas, J.C.; Rack, A.; Brett, D.J.L.; Shearing, P.R.; Keyser, M.; Darcy, E.; Journal of Power Sources (March 2019); https://doi.org/10.1016/j.jpowsour.2019.01.077

Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes during Electrochemical Cycling; Märker, K.; Reeves, P.J.; Xu, C.; Griffith, K.J.; Grey, C.P.; Chemistry of Materials (March 2019); https://doi.org/10.1021/acs.chemmater.9b00140

Temperature Considerations for Charging Li-Ion Batteries: Inductive versus Mains Charging Modes for Portable Electronic Devices; Loveridge, M.J.; Tan, C.C.; Maddar, F.M.; Remy, G.; Abbott, M.; Dixon, S.; McMahon, R.; Curnick, O.; Ellis, M.; Lain, M.; Barai, A.; Amor-Segan, M.; Bhagat, R.; Greenwood, D.; ACS Energy Letters (April 2019); https://doi.org/10.1021/acsenergylett.9b00663

Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries; Cowan, A.J.; Hardwick, L.J.; Annual Review of Analytical Chemistry (April 2019); https://doi.org/10.1146/annurev-anchem-061318-115303 (See also SOLBAT)

Morphology-Directed Synthesis of LiFePO4 and LiCoPO4 from Nanostructured Li1+2 xPO3+ x; El-Shinawi, H.; Cussen, E.J.; Corr, S.A.; Inorganic Chemistry (May 2019); https://doi.org/10.1021/acs.inorgchem.9b00517

Porous Metal-Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-Ion Batteries; Malik, R.; Loveridge, M.J.; Williams, L.J.; Huang, Q.; West, G.; Shearing, P.R.; Bhagat, R.; Walton, R.I.; Chemistry of Materials (May 2019); https://doi.org/10.1021/acs.chemmater.9b00933

Spatially Resolving Lithiation in Silicon-Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography; Finegan, D.P.; Vamvakeros, A.; Cao, L.; Tan, C.; Heenan, T.M.M.; Daemi, S.R.; Jacques, S.D.M.; Beale, A.M.; Di Michiel, M.; Smith, K.; Brett, D.J.L.; Shearing, P.R.; Ban, C.; Nano Letters (May 2019); https://doi.org/10.1021/acs.nanolett.9b00955

Concentrated electrolytes for enhanced stability of Al-alloy negative electrodes in Li-ion batteries; Chan, A.K.; Tatara, R.; Feng, S.; Karayaylali, P.; Lopez, J.; Stephens, I.E.L.; Shao-Horn, Y.; Journal of the Electrochemical Society (June 2019); https://doi.org/10.1149/2.0581910jes

Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response; Wang, B.; Fielding, A.J.; Dryfe, R.A.W.; Journal of Physical Chemistry C (August 2019); https://doi.org/10.1021/acs.jpcc.9b04292

Virtual unrolling of spirally-wound lithium-ion cells for correlative degradation studies and predictive fault detection; Kok, M.D.R.; Robinson, J.B.; Weaving, J.S.; Jnawali, A.; Pham, M.; Iacoviello, F.; Brett, D.J.L.; Shearing, P.R.; Sustainable Energy and Fuels (August 2019); https://doi.org/10.1039/c9se00500e (See also MSM)

Kerr gated Raman spectroscopy of LiPF6 salt and LiPF6-based organic carbonate electrolyte for Li-ion batteries; Cabo-Fernandez, L.; Neale, A.R.; Braga, F.; Sazanovich, I.V.; Kostecki, R.; Hardwick, L.J.; Physical Chemistry Chemical Physics (Sept 2019); https://doi.org/10.1039/c9cp02430a

Representative resolution analysis for X-ray CT: A Solid oxide fuel cell case study; Heenan, T.M.M.; Tan, C.; Jervis, R.; Lu, X.; Brett, D.J.L.; Shearing, P.R.; Chemical Engineering Science: X (Nov 2019); https://doi.org/10.1016/j.cesx.2019.100043

Developments in X-ray tomography characterization for electrochemical devices; Heenan, T.M.M.; Tan, C.; Hack, J.; Brett, D.J.L.; Shearing, P.R.; Materials Today (Dec 2019); https://doi.org/10.1016/j.mattod.2019.05.019

Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes; Zou, J.; Li, F.; Bissett, M.A.; Kim, F.; Hardwick, L.J.; Electrochimica Acta (Jan 2020); https://doi.org/10.1016/j.electacta.2019.135284

Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes; Finegan, D.P.; Vamvakeros, A.; Tan, C.; Heenan, T.M.M.; Daemi, S.R.; Seitzman, N.; Di Michiel, M.; Jacques, S.; Beale, A.M.; Brett, D.J.L.; Shearing, P.R.; Smith, K.; Nature Communications (Jan 2020); https://doi.org/10.1038/s41467-020-14467-x

4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique; Ziesche, R.F.; Arlt, T.; Finegan, D.P.; Heenan, T.M.M.; Tengattini, A.; Baum, D.; Kardjilov, N.; Markötter, H.; Manke, I.; Kockelmann, W.; Brett, D.J.L.; Shearing, P.R.; Nature Communications (Feb 2020); https://doi.org/10.1038/s41467-019-13943-3

Rapid Preparation of Geometrically Optimal Battery Electrode Samples for Nano Scale X-ray Characterisation; Tan, C.; Daemi, S.; Heenan, T.; Iacoviello, F.; Leach, A.S.; Rasha, L.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (April 2020); https://doi.org/10.1149/1945-7111/ab80cd

Thermal Runaway of a Li-Ion Battery Studied by Combined ARC and Multi-Length Scale X-ray CT; Patel, D.; Robinson, J.B.; Ball, S.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (April 2020); https://doi.org/10.1149/1945-7111/ab7fb6

Emerging X-ray imaging technologies for energy materials; Cao, C.; Toney, M.F.; Sham, T.-K.; Harder, R.; Shearing, P.R.; Xiao, X.; Wang, J.; Materials Today (April 2020); https://doi.org/10.1016/j.mattod.2019.08.011 (See also SOLBAT)

In situ Electron paramagnetic resonance spectroelectrochemical study of graphene-based supercapacitors: Comparison between chemically reduced graphene oxide and nitrogen-doped reduced graphene oxide; Wang, B.; Likodimos, V.; Fielding, A.J.; Dryfe, R.A.W.; Carbon (April 2020); https://doi.org/10.1016/j.carbon.2019.12.045

Resolving Li-Ion Battery Electrode Particles Using Rapid Lab-Based X-Ray Nano-Computed Tomography for High-Throughput Quantification; Heenan, T.M.M.; Llewellyn, A.V.; Leach, A.S.; Kok, M.D.R.; Tan, C.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Advanced Science (April 2020); https://doi.org/10.1002/advs.202000362

Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning; Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A.; Nature Communications (April 2020); https://doi.org/10.1038/s41467-020-15235-7

3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling; Lu, X.; Bertei, A.; Finegan, D.P.; Tan, C.; Daemi, S.R.; Weaving, J.S.; O’Regan, K.B.; Heenan, T.M.M.; Hinds, G.; Kendrick, E.; Brett, D.J.L.; Shearing, P.R.; Nature Communications (April 2020); https://doi.org/10.1038/s41467-020-15811-x (See also MSM)

Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal; Hope, M.A.; Rinkel, B.L.D.; Gunnarsdóttir, A.B.; Märker, K.; Menkin, S.; Paul, S.; Sergeyev, I.V.; Grey, C.P.; Nature Communications (May 2020); https://doi.org/10.1038/s41467-020-16114-x

Quantitative Relationships between Pore Tortuosity, Pore Topology, and Solid Particle Morphology Using a Novel Discrete Particle Size Algorithm; Usseglio-Viretta, F.L.E.; Finegan, D.P.; Colclasure, A.; Heenan, T.M.M.; Abraham, D.; Shearing, P.; Smith, K.; Journal of the Electrochemical Society (June 2020); https://doi.org/10.1149/1945-7111/ab913b

Theoretical transmissions for X-ray computed tomography studies of lithium-ion battery cathodes; Heenan, T.M.M.; Tan, C.; Wade, A.J.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Materials and Design (June 2020); https://doi.org/10.1016/j.matdes.2020.108585

The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries; Driscoll, E.H.; Hayward, E.C.; Patchett, R.; Anderson, P.A.; Slater, P.R.; Journal of Chemical Education (June 2020); https://doi.org/10.1021/acs.jchemed.0c00282 (See also Catmat, Nextrode and ReLIB)

Exploring cycling induced crystallographic change in NMC with X-ray diffraction computed tomography; Daemi, S.R.; Tan, C.; Vamvakeros, A.; Heenan, T.M.M.; Finegan, D.P.; Di Michiel, M.; Beale, A.M.; Cookson, J.; Petrucco, E.; Weaving, J.S.; Jacques, S.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Physical Chemistry Chemical Physics (June 2020); https://doi.org/10.1039/d0cp01851a

Highly Sensitive Operando Pressure Measurements of Li-ion Battery Materials with a Simply Modified Swagelok Cell; Ryall, N.; Garcia-Araez, N.; Journal of the Electrochemical Society (July 2020); https://doi.org/10.1149/1945-7111/ab9e81

The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance; Brugge, R.H.; Pesci, F.M.; Cavallaro, A.; Sole, C.; Isaacs, M.A.; Kerherve, G.; Weatherup, R.S.; Aguadero, A.; Journal of Materials Chemistry A (July 2020); https://doi.org/10.1039/d0ta04974c

Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties; Zhang, Z.; Smith, K.; Jervis, R.; Shearing, P.R.; Miller, T.S.; Brett, D.J.L.; ACS Applied Materials and Interfaces (July 2020); https://doi.org/10.1021/acsami.0c11190

Electrolyte oxidation pathways in lithium-ion batteries; Rinkel, B.L.D.; Hall, D.S.; Temprano, I.; Grey, C.P.; Journal of the American Chemical Society (July 2020); https://doi.org/10.1021/jacs.0c06363

In-Situ Raman Spectroscopy of Reaction Products in Optofluidic Hollow-Core Fiber Microreactors; Gentleman, A.S.; Miele, E.; Lawson, T.; Kohler, P.; Kim, S.; Yousaf, S.; Garcia, D.A.; Lage, A.; Grey, C.P.; Baumberg, J.J.; Frosz, M.H.; Russell, P.S.J.; Reisner, E.; Euser, T.G.; 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020 - Proceedings (August 2020); https://doi.org/10.1364/CLEOPR.2020.C2H_2

Erratum: Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries usingin situNMR spectroscopy; Gunnarsdóttir, A.B.; Vema, S.; Menkin, S.; Marbella, L.E.; Grey, C.P.; Journal of Materials Chemistry A (August 2020); https://doi.org/10.1039/d0ta90183k

Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries; Xu, C.; Märker, K.; Lee, J.; Mahadevegowda, A.; Reeves, P.J.; Day, S.J.; Groh, M.F.; Emge, S.P.; Ducati, C.; Layla Mehdi, B.; Tang, C.C.; Grey, C.P.; Nature Materials (August 2020); https://doi.org/10.1038/s41563-020-0767-8

Correlative acoustic time-of-flight spectroscopy and X-ray imaging to investigate gas-induced delamination in lithium-ion pouch cells during thermal runaway; Pham, M.T.M.; Darst, J.J.; Finegan, D.P.; Robinson, J.B.; Heenan, T.M.M.; Kok, M.D.R.; Iacoviello, F.; Owen, R.; Walker, W.Q.; Magdysyuk, O.V.; Connolley, T.; Darcy, E.; Hinds, G.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Sept 2020); https://doi.org/10.1016/j.jpowsour.2020.228039

Operando NMR of NMC811/Graphite Lithium-Ion Batteries: Structure, Dynamics, and Lithium Metal Deposition; Märker, K.; Xu, C.; Grey, C.P.; Journal of the American Chemical Society (Sept 2020); https://doi.org/10.1021/jacs.0c06727

Ageing analysis and asymmetric stress considerations for small format cylindrical cells for wearable electronic devices; Tan, C.C.; Walker, M.; Remy, G.; Kourra, N.; Maddar, F.; Dixon, S.; Williams, M.; Loveridge, M.J.; Journal of Power Sources (Oct 2020); https://doi.org/10.1016/j.jpowsour.2020.228626

Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes; Heenan, T.M.M.; Jnawali, A.; Kok, M.; Tranter, T.G.; Tan, C.; Dimitrijevic, A.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Data in Brief (Oct 2020); https://doi.org/10.1016/j.dib.2020.106033

Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes; Nicholls, D.; Lee, J.; Amari, H.; Stevens, A.J.; Mehdi, B.L.; Browning, N.D.; Nanoscale (Oct 2020); https://doi.org/10.1039/d0nr04589f (See also ReLIB and Characterisation)

Synthesis of layered silicon-graphene hetero-structures by wet jet milling for high capacity anodes in Li-ion batteries; Malik, R.; Huang, Q.; Silvestri, L.; Liu, D.; Pellegrini, V.; Marasco, L.; Venezia, E.; Abouali, S.; Bonaccorso, F.; Lain, M.J.; Greenwood, D.; West, G.; Shearing, P.R.; Loveridge, M.J.; 2D Materials (Oct 2020); https://doi.org/10.1088/2053-1583/aba5ca

An advanced microstructural and electrochemical datasheet on 18650 li-ion batteries with nickel-rich NMC811 cathodes and graphite-silicon anodes; Heenan, T.M.M.; Jnawali, A.; Kok, M.D.R.; Tranter, T.G.; Tan, C.; Dimitrijevic, A.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Nov 2020); https://doi.org/10.1149/1945-7111/abc4c1

Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-Rich Li-Ion Batteries; Dose, W.M.; Xu, C.; Grey, C.P.; De Volder, M.F.L.; Cell Reports Physical Science (Nov 2020); https://doi.org/10.1016/j.xcrp.2020.100253

Prospects for lithium-ion batteries and beyond—a 2030 vision; Grey, C.P.; Hall, D.S.; Nature Communications (Dec 2020); https://doi.org/10.1038/s41467-020-19991-4

Sample Dependence of Magnetism in the Next-Generation Cathode Material LiNi0.8Mn0.1Co0.1O2; Mukherjee, P.; Paddison, J.A.M.; Xu, C.; Ruff, Z.; Wildes, A.R.; Keen, D.A.; Smith, R.I.; Grey, C.P.; Dutton, S.E.; Inorganic Chemistry (Dec 2020); https://doi.org/10.1021/acs.inorgchem.0c02899

Phase Behavior during Electrochemical Cycling of Ni-Rich Cathode Materials for Li-Ion Batteries; Xu, C.; Reeves, P.J.; Jacquet, Q.; Grey, C.P.; Advanced Energy Materials (Dec 2020); https://doi.org/10.1002/aenm.202003404

A dilatometric study of graphite electrodes during cycling with x-ray computed tomography; Michael, H.; Iacoviello, F.; Heenan, T.M.M.; Llewellyn, A.; Weaving, J.S.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Jan 2021); https://doi.org/10.1149/1945-7111/abd648

The effects of ambient storage conditions on the structural and electrochemical properties of NMC-811 cathodes for Li-ion batteries; Busà, C.; Belekoukia, M.; Loveridge, M.J.; Electrochimica Acta (Jan 2021); https://doi.org/10.1016/j.electacta.2020.137358

Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy; Lee, J.; Nicholls, D.; Browning, N.D.; Mehdi, B.L.; Physical Chemistry Chemical Physics (March 2021); https://doi.org/10.1039/d0cp06369j (See also ReLIB and Characterisation)

Operando Measurement of Layer Breathing Modes in Lithiated Graphite; Yadegari, H.; Koronfel, M.A.; Wang, K.; Thornton, D.B.; Stephens, I.E.L.; Molteni, C.; Haynes, P.D.; Ryan, M.P.; ACS Energy Letters (April 2021); https://doi.org/10.1021/acsenergylett.1c00494

Developments in Dilatometry for Characterisation of Electrochemical Devices; Michael, H.; Jervis, R.; Brett, D.J.L; Shearing, P.R.; Batteries and Supercaps (April 2021); https://doi.org/10.1002/batt.202100027 (See also LiSTAR)

Asphericity Can Cause Nonuniform Lithium Intercalation in Battery Active Particles; Mistry, A.; Heenan, T.; Smith, K.; Shearing, P.; Mukherjee, P.P.; ACS Energy Letters (May 2021); https://doi.org/10.1021/acsenergylett.2c00870 (See also SafeBatt)

Transition metal dissolution and degradation in nmc811-graphite electrochemical cells; Ruff, Z.; Xu, C.; Grey, C.P.; Journal of the Electrochemical Society (June 2021); https://doi.org/10.1149/1945-7111/ac0359

Is lithium the key for nitrogen electroreducti on?; Westhead, O.; Jervis, R.; Stephens, I.E.L.; Science (June 2021); https://doi.org/10.1126/science.abi8329

Dendrite suppression by anode polishing in zinc-ion batteries; Zhang, Z.; Said, S.; Smith, K.; Zhang, Y.S.; He, G.; Jervis, R.; Shearing, P.R.; Miller, T.S.; Brett, D.J.L.; Journal of Materials Chemistry A (June 2021); https://doi.org/10.1039/d1ta02682h (See also LiSTAR)

The Complex Role of Aluminium Contamination in Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries; Lee, J.; Amari, H.; Bahri, M.; Shen, Z.; Xu, C.; Ruff, Z.; Grey, C.P.; Ersen, O.; Aguadero, A.; Browning, N.D.; Mehdi, B.L.; Batteries and Supercaps (June 2021); https://doi.org/10.1002/batt.202100110 (See also ReLIB)

Degradation in lithium ion battery current collectors; Guo, L.; Thornton, D.B.; Koronfel, M.A.; Stephens, I.E.L.; Ryan, M.P.; JPhys Energy (July 2021); https://doi.org/10.1088/2515-7655/ac0c04

Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries; Menkin, S.; Okeefe, C.A.; Gunnarsdóttir, A.B.; Dey, S.; Pesci, F.M.; Shen, Z.; Aguadero, A.; Grey, C.P.; Journal of Physical Chemistry C (July 2021); https://doi.org/10.1021/acs.jpcc.1c03877

Characterizing Batteries by In Situ Electrochemical Atomic Force Microscopy: A Critical Review; Zhang, Z.; Said, S.; Smith, K.; Jervis, R.; Howard, C.A.; Shearing, P.R.; Brett, D.J.L.; Miller, T.S.; Advanced Energy Materials (Sept 2021); https://doi.org/10.1002/aenm.202101518 (See also LiSTAR)

3D X-Ray Characterization of Energy Storage and Conversion Devices; Tan, C.; Leach, A.; Heenan, T.M.M.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Advances in Sustainable Energy (Sept 2021); https://doi.org/10.1007/978-3-030-74406-9_18 (See also SOLBAT)

The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries; Dose, W.M.; Morzy, J.K.; Mahadevegowda, A.; Ducati, C.; Grey, C.P.; De Volder, M.F.L.; Journal of Materials Chemistry A (Oct 2021); https://doi.org/10.1039/d1ta06324c

Nanoscale state-of-charge heterogeneities within polycrystalline nickel-rich layered oxide cathode materials; Tan, C.; Leach, A.S.; Heenan, T.M.M.; Parks, H.; Jervis, R.; Weker, J.N.; Brett, D.J.L.; Shearing, P.R.; Cell Reports Physical Science (Dec 2021); https://doi.org/10.1016/j.xcrp.2021.100647 (See also SafeBatt and ReLIB)

Negating the Interfacial Resistance between Solid and Liquid Electrolytes for Next-Generation Lithium Batteries; Vivek, J.P.; Meddings, N.; Garcia-Araez, N.; ACS Applied Materials and Interfaces (Dec 2021); https://doi.org/10.1021/acsami.1c17247

A solution-processable near-infrared thermally activated delayed fluorescent dye with a fused aromatic acceptor and aggregation induced emission behavior; Congrave, D.G.; Drummond, B.H.; Gu, Q.; Montanaro, S.; Francis, H.; Riesgo-González, V.; Zeng, W.; Matthews, C.S.B.; Dowland, S.; Wright, I.A.; Grey, C.P.; Friend, R.H.; Bronstein, H.; Journal of Materials Chemistry C (Jan 2022); https://doi.org/10.1039/d1tc04753a

Spatially resolved operando synchrotron-based X-ray diffraction measurements of Ni-rich cathodes for Li-ion batteries; A.S. Leach, A.V. Llewellyn, C. Xu, C. Tan, T.M.M. Heenan, A. Dimitrijevic, K. Kleiner, C.P Grey, D.J.L. Brett, C.C. Tang, P.R. Shearing; R. Jervis; Frontiers in Chemical Engineering (Jan 2022); https://doi.org/10.3389/fceng.2021.794194 (See also SafeBatt)

In-situ X-ray tomographic imaging study of gas and structural evolution in a commercial Li-ion pouch cell; Du, W.; Owen, R.E.; Jnawali, A.; Neville, T.P.; Iacoviello, F.; Zhang, Z.; Liatard, S.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Feb 2022); https://doi.org/10.1016/j.jpowsour.2021.230818 (See also SafeBatt and LiSTAR)

Thermal Runaway of Li-Ion Cells: How Internal Dynamics, Mass Ejection, and Heat Vary with Cell Geometry and Abuse Type; Sharp, M.; Darst, J.J.; Hughes, P.; Billman, J.; Pham, M.; Petrushenko, D.; Heenan, T.M.M.; Jervis, R.; Owen, R.; Patel, D.; Wenjia, D.; Michael, H.; Rack, A.; Magdysyuk, O.V.; Connolley, T.; Brett, D.J.L.; Hinds, G.; Keyser, M.; Darcy, E.; Shearing, P.R.; Walker, W.; Finegan, D.P.; Journal of the Electrochemical Society (Feb 2022); https://doi.org/10.1149/1945-7111/ac4fef (See also SafeBatt)

Cycle-Induced Interfacial Degradation and Transition-Metal Cross-Over in LiNi0.8Mn0.1Co0.1O2-Graphite Cells; Björklund, E.; Xu, C.; Dose, W.M.; Sole, C.G.; Thakur, P.K.; Lee, T.-L.; De Volder, M.F.L.; Grey, C.P.; Weatherup, R.S.; Chemistry of Materials (Feb 2022); https://doi.org/10.1021/acs.chemmater.1c02722

Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries; Dose, W.M.; Temprano, I.; Allen, J.P.; Björklund, E.; O'Keefe, C.A.; Li, W.; Mehdi, B.L.; Weatherup, R.S.; De Volder, M.F.L.; Grey, C.P.; ACS Applied Materials and Interfaces (March 2022); https://doi.org/10.1021/acsami.1c22812

Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes; Miele, E.; Dose, W.M.; Manyakin, I.; Frosz, M.H.; Ruff, Z.; De Volder, M.F.L.; Grey, C.P.; Baumberg, J.J.; Euser, T.G.; Nature Communications (March 2022); https://doi.org/10.1038/s41467-022-29330-4

Effect of Lithiation upon the Shear Strength of NMC811 Single Crystals; Stallard, J.C.; Vema, S.; Hall, D.S.; Dennis, A.R.; Penrod, M.E.; Grey, C.P.; Deshpande, V.S.; Fleck, N.A.; Journal of the Electrochemical Society (April 2022); https://doi.org/10.1149/1945-7111/ac6244 (See also FutureCat)

Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling; Boyce, A.M.; Martínez-Pañeda, E.; Wade, A.; Zhang, Y.S.; Bailey, J.J.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (April 2022); https://doi.org/10.1016/j.jpowsour.2022.231119 (See also MSM, Nextrode and ReLIB)

Operando Ultrasonic Monitoring of Lithium-Ion Battery Temperature and Behaviour at Different Cycling Rates and under Drive Cycle Conditions; Owen, R.E.; Robinson, J.B.; Weaving, J.S.; Pham, M.T.M.; Tranter, T.G.; Neville, T.P.; Billson, D.; Braglia, M.; Stocker, R.; Tidblad, A.A.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (April 2022); https://doi.org/10.1149/1945-7111/ac6833 (See also MSM, SafeBatt, LiSTAR and ReLIB)

A greyscale erosion algorithm for tomography (GREAT) to rapidly detect battery particle defects; Wade, A.; Heenan, T.M.M.; Kok, M.; Tranter, T.; Leach, A.; Tan, C.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; npj Materials Degradation (May 2022); https://doi.org/10.1038/s41529-022-00255-z (See also MSM)

Dynamics of Solid-Electrolyte Interphase Formation on Silicon Electrodes Revealed by Combinatorial Electrochemical Screening; Martín-Yerga, D.; Milan, D.C.; Xu, X.; Fernández-Vidal, J.; Whalley, L.; Cowan, A.J.; Hardwick, L.J.; Unwin, P.R.; Angewandte Chemie - International Edition (June 2022); https://doi.org/10.1002/anie.202207184

Aerosol Jet Printing as a Versatile Sample Preparation Method for Operando Electrochemical TEM Microdevices; Morzy, J.K.; Sartor, A.; Dose, W.M.; Ou, C.; Kar-Narayan, S.; De Volder, M.F.L.; Ducati, C.; Advanced Materials Interfaces (June 2022); https://doi.org/10.1002/admi.202200530

Author Correction: Investigating the presence of adsorbed species on Pt steps at low potentials ; Rizo, R.; Fernández-Vidal, J.; Hardwick, L.J.; Attard, G.A.; Vidal-Iglesias, F.J.; Climent, V.; Herrero, E.; Feliu, J.M.; Nature Communications (June 2022); https://doi.org/10.1038/s41467-022-31404-2

Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries; Rinkel, B.L.D.; Vivek, J.P.; Garcia-Araez, N.; Grey, C.P.; Energy and Environmental Science (July 2022); https://doi.org/10.1039/d1ee04053g

Quantitative spatiotemporal mapping of thermal runaway propagation rates in lithium-ion cells using cross-correlated Gabor filtering; Radhakrishnan, A.N.P.; Buckwell, M.; Pham, M.; Finegan, D.P.; Rack, A.; Hinds, G.; Brett, D.J.L.; Shearing, P.R.; Energy and Environmental Science (July 2022); https://doi.org/10.1039/d1ee03430h (See also SafeBatt)

Long-Life and pH-Stable SnO2-Coated Au Nanoparticles for SHINERS; Fernández-Vidal, J.; Gómez-Marín, A.M.; Jones, L.A.H.; Yen, C.-H.; Veal, T.D.; Dhanak, V.R.; Hu, C.-C.; Hardwick, L.J.; Journal of Physical Chemistry C (July 2022); https://doi.org/10.1021/acs.jpcc.2c02432

Lithium Insertion into Graphitic Carbon Observed via Operando Kerr-Gated Raman Spectroscopy Enables High State of Charge Diagnostics; Neale, A.R.; Milan, D.C.; Braga, F.; Sazanovich, I.V.; Hardwick, L.J.; ACS Energy Letters (July 2022); https://doi.org/10.1021/acsenergylett.2c01120

Operando monitoring of single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anodes; Merryweather, A.J.; Jacquet, Q.; Emge, S.P.; Schnedermann, C.; Rao, A.; Grey, C.P.; Nature Materials (August 2022); https://doi.org/10.1038/s41563-022-01324-z

Correlative electrochemical acoustic time-of-flight spectroscopy and X-ray imaging to monitor the performance of single-crystal and polycrystalline NMC811/Gr lithium-ion batteries; Michael, H.; Owen, R.E.; Robinson, J.B.; Heenan, T.M.M.; Tan, C.; Wade, A.J.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Sept 2022); https://doi.org/10.1016/j.jpowsour.2022.231775 (See also LiSTAR)

Surface reduction in lithium- and manganese-rich layered cathodes for lithium ion batteries drives voltage decay; B.Wen, F.N. Sayed, W.M. Dose, J.K. Morzy, Y. Sonaf, S. Nagendranb, C. Ducatide, C.P. Grey, M.F.L. De Volder; Journal of Materials Chemistry A (Sept 2022); https://doi.org/10.1039/D2TA04876K (See also FutureCat and Catmat)

Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries; Dose, W.M.; Li, W.; Temprano, I.; O'Keefe, C.A.; Mehdi, B.L.; De Volder, M.F.L.; Grey, C.P.; ACS Energy Letters (Sept 2022); https://doi.org/10.1021/acsenergylett.2c01722

Giant mid-IR resonant coupling to molecular vibrations in sub-nm gaps of plasmonic multilayer metafilms; Arul, R.; Grys, D.-B.; Chikkaraddy, R.; Mueller, N.S.; Xomalis, A.; Miele, E.; Euser, T.G.; Baumberg, J.J.; Light: Science and Applications (Sept 2022); https://doi.org/10.1038/s41377-022-00943-0

Operando visualisation of kinetically-induced lithium heterogeneities in single-particle layered Ni-rich cathodes; Xu, C.; Merryweather, A.J.; Pandurangi, S.S.; Lun, Z.; Hall, D.S.; Deshpande, V.S.; Fleck, N.A.; Schnedermann, C.; Rao, A.; Grey, C.P.; Joule (Oct 2022); https://doi.org/10.1016/j.joule.2022.09.008

Multi-Scale Modelling

Catalysing surface film formation, Hoster, H.E., Nature Catalysis, (Apr 2018), DOI:10.1038/s41929-018-0060-2  https://www.nature.com/articles/s41929-018-0060-2

Solid electrolyte interphase: Can faster formation at lower potentials yield better performance?, Antonopoulos, B.K., Electrochimica Acta, (Apr 2018), DOI:10.1016/j.electacta.2018.03.007 https://www.sciencedirect.com/science/article/pii/S001346861830495X

Formation of the Solid Electrolyte Interphase at Constant Potentials: a Model Study on Highly Oriented Pyrolytic Graphite, Antonopoulos, B.K., Batteries & Supercaps, (Jun 2018), DOI:10.1002/batt.201800029  https://onlinelibrary.wiley.com/doi/full/10.1002/batt.201800029

Quantifying structure dependent responses in Li-ion cells with excess Li spinel cathodes: matching voltage and entropy profiles through mean field models, Schlueter, S., Physical Chemistry Chemical Physics, (Jul 2018), DOI:10.1039/C8CP02989J https://pubs.rsc.org/en/Content/ArticleLanding/2018/CP/C8CP02989J

Controlled hydroxy-fluorination reaction of anatase to promote Mg2+ mobility in rechargeable magnesium batteries, Ma, J., Chemical Communications, (Aug 2018), DOI:10.1039/C8CC04136A https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc04136a

Correlated Polyhedral Rotations in the Absence of Polarons During Electrochemical Insertion of Lithium in ReO3, Bashian, N., ACS Energy Letters, (Sep 2018), DOI:10.1021/acsenergylett.8b01179 https://pubs.acs.org/doi/10.1021/acsenergylett.8b01179

Oxidation states and ionicity, Walsh, A., Nature Materials, (Oct 2018), DOI:10.1038/s41563-018-0165-7  https://www.nature.com/articles/s41563-018-0165-7

Modelling the effects of thermal gradients induced by tab and surface cooling on lithium ion cell performance, Zhao, Y., Journal of The Electrochemical Society, (Oct 2018), DOI:10.1149/2.0901813jes https://iopscience.iop.org/article/10.1149/2.0901813jes

Quick-start guide for first-principles modelling of semiconductor interfaces, Park, J.-S., Journal of Physics: Energy, (Nov 2018), DOI:10.1088/2515-7655/aad928 https://iopscience.iop.org/article/10.1088/2515-7655/aad928

4D Visualisation of In-situ Nano-compression of Li-ion Cathode Materials to Mimic Early Stage Calendering, Daemi, S.R., Materials Horizons, (Dec 2018), DOI:10.1039/C8MH01533C https://pubs.rsc.org/en/content/articlelanding/2019/MH/C8MH01533C (See also Degradation)

Impact of Anion Vacancies on the Local and Electronic Structures of Iron-Based Oxyfluoride Electrodes, Burbano, M., The Journal of Physical Chemistry Letters, (Jan 2019), DOI:10.1021/acs.jpclett.8b03503 https://pubs.acs.org/doi/10.1021/acs.jpclett.8b03503

Aligned Ionogel Electrolytes for High‐Temperature Supercapacitors, Liu, X., Advanced Science, (Jan 2019), DOI:10.1002/advs.201801337 https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201801337

Non-equilibrium crystallization pathways of manganese oxides in aqueous solution, Sun, W., Nature Communications, (Feb 2019), DOI:10.1038/s41467-019-08494-6 https://www.nature.com/articles/s41467-019-08494-6

pyscses: a PYthon Space-Charge Site-Explicit Solver, Wellock, G.L., The Journal of Open Source Software, (Mar 2019), DOI:10.21105/joss.01209 https://joss.theoj.org/papers/803ed6dd19f453819bdd3ed9ceadf3b3

Incorporating Dendrite Growth into Continuum Models of Electrolytes: Insights from NMR Measurements and Inverse Modelling, Sethurajan, A.K., Journal of The Electrochemical Society, (May 2019), DOI:10.1149/2.0921908jes  https://iopscience.iop.org/article/10.1149/2.0921908jes

crystal-torture: A crystal tortuosity module, O’Rourke, C., The Journal of Open Source Software, (Jun 2019), DOI:10.21105/joss.01306  https://joss.theoj.org/papers/10.21105/joss.01306

The Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium-Ion Batteries, Hales, A., Journal of The Electrochemical Society, (Jul 2019), DOI:10.1149/2.0191912jes https://iopscience.iop.org/article/10.1149/2.0191912jes

Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: I. Physical Model, Sulzer, V., Journal of The Electrochemical Society, (Jul 2019), DOI:10.1149/2.0301910jes https://iopscience.iop.org/article/10.1149/2.0301910jes

Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: Part II. Asymptotic Analysis, Sulzer, V., Journal of The Electrochemical Society, (Jul 2019), DOI:10.1149/2.0441908jes https://iopscience.iop.org/article/10.1149/2.0441908jes

Smart and Hybrid Balancing System: Design, Modeling and Experimental Demonstration, Pinto de Castro, R., IEEE Transactions on Vehicular Technology, (Jul 2019), DOI:10.1109/TVT.2019.2929653 https://ieeexplore.ieee.org/abstract/document/8768008

Lithium-ion battery fast charging: A review, Tomaszewska, A., eTransportation, (Aug 2019), DOI:10.1016/j.etran.2019.100011 https://www.sciencedirect.com/science/article/pii/S2590116819300116

The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs, Liu, X., Applied Energy, (Aug 2019), DOI:10.1016/j.apenergy.2019.04.108 https://www.sciencedirect.com/science/article/pii/S0306261919307810

How to Cool Lithium Ion Batteries: Optimising Cell Design using a Thermally Coupled Model, Zhao, Y., Journal of The Electrochemical Society, (Aug 2019), DOI:10.1149/2.0501913jes https://iopscience.iop.org/article/10.1149/2.0501913jes

Communication—Why High-Precision Coulometry and Lithium Plating Studies on Commercial Lithium-Ion Cells Require Thermal Baths, Zulke, A., Journal of The Electrochemical Society, (Aug 2019), DOI:10.1149/2.0841913jes  https://iopscience.iop.org/article/10.1149/2.0841913jes

Highly Anisotropic Thermal Transport in LiCoO2, Yang, H., The Journal of Physical Chemistry Letters, (Sep 2019), DOI:10.1021/acs.jpclett.9b02073 https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02073

Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions, Pang, M., Physical Chemistry Chemical Physics, (Sep 2019), DOI:10.1039/C9CP03886H https://pubs.rsc.org/no/content/articlelanding/2019/cp/c9cp03886h/unauth

Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries, Reniers, J., Journal of The Electrochemical Society, (Sep 2019), DOI:10.1149/2.0281914jes https://iopscience.iop.org/article/10.1149/2.0281914jes

Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review, Li, Y., Renewable and Sustainable Energy Reviews, (Oct 2019), DOI:10.1016/j.rser.2019.109254 https://www.sciencedirect.com/science/article/abs/pii/S136403211930454X

Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells, Ai, W., Journal of The Electrochemical Society, (Oct 2019), DOI:10.1149/2.0122001JES https://iopscience.iop.org/article/10.1149/2.0122001JES

Composition-dependent thermodynamic and mass-transport characterization of lithium hexafluorophosphate in propylene carbonate, Hou, T., Electrochimica Acta, (Oct 2019), DOI:10.1016/j.electacta.2019.135085 https://www.sciencedirect.com/science/article/pii/S0013468619319565

Exploiting cationic vacancies for increased energy densities in dual-ion batteries, Koketsu, T., Energy Storage Materials, (Oct 2019), DOI:10.1016/j.ensm.2019.10.019 https://www.sciencedirect.com/science/article/pii/S2405829719310153

An asymptotic derivation of a single particle model with electrolyte, Marquis, S, Journal of The Electrochemical Society, (Nov 2019), DOI:10.1149/2.0341915jes https://iopscience.iop.org/article/10.1149/2.0341915jes

Battery Safety: Data-Driven Prediction of Failure, Finegan, D. P., Joule, (Nov 2019), DOI:10.1016/j.joule.2019.10.013 https://www.sciencedirect.com/science/article/abs/pii/S254243511930529X

Transitions of lithium occupation in graphite: A physically informed model in the dilute lithium occupation limit supported by electrochemical and thermodynamic measurements, Mercer, M., Electrochimica Acta, (Nov 2019), DOI:10.1016/j.electacta.2019.134774 https://www.sciencedirect.com/science/article/pii/S0013468619316457

Multi-scale Electrolyte Transport Simulations for Lithium Ion Batteries, Hanke, F., Journal of The Electrochemical Society, (Nov 2019), DOI:10.1149/2.0222001JES https://iopscience.iop.org/article/10.1149/2.0222001JES

Native Defects and their Doping Response in the Lithium Solid Electrolyte Li7La3Zr2O12, Squires, A. G., Chemistry of Materials, (Dec 2019), DOI:10.1021/acs.chemmater.9b04319 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b04319

Descriptors for Electron and Hole Charge Carriers in Metal Oxides, Davies, D. W., The Journal of Physical Chemistry Letters, (Dec 2019), DOI:10.1021/acs.jpclett.9b03398 https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b03398

Effect of Temperature on The Kinetics of Electrochemical Insertion of Li-Ions into a Graphite Electrode Studied by Kinetic Monte Carlo, Gavilán-Arriazu, E. M., Journal of The Electrochemical Society, (Jan 2020), DOI:10.1149/2.0332001JES https://iopscience.iop.org/article/10.1149/2.0332001JES

The Surface Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium-Ion Battery Pouch Cells, Hales, A., Journal of The Electrochemical Society, (Jan 2020), DOI:10.1149/1945-7111/ab6985  https://iopscience.iop.org/article/10.1149/1945-7111/ab6985

Generalised single particle models for high-rate operation of graded lithium-ion electrodes: systematic derivation and validation, Richardson, G., Electrochimica Acta, (Feb 2020), DOI:10.1016/j.electacta.2020.135862 https://www.sciencedirect.com/science/article/pii/S0013468620302541

Mechanics of the Ideal Double-Layer Capacitor, Monroe, C. W., Journal of The Electrochemical Society, (Feb 2020), DOI:10.1149/1945-7111/ab6b04 https://iopscience.iop.org/article/10.1149/1945-7111/ab6b04 (See also SOLBAT)

Parameterization of prismatic lithium–iron–phosphate cells through a streamlined thermal/electrochemical model, Chu, H. N., Journal of Power Sources, (Mar 2020), DOI:10.1016/j.jpowsour.2020.227787 https://www.sciencedirect.com/science/article/abs/pii/S0378775320300902

A practical approach to large scale electronic structure calculations in electrolyte solutions via continuum-embedded linear-scaling DFT, Dziedzic, J., The Journal of Physical Chemistry C, (Mar 2020), DOI:10.1021/acs.jpcc.0c00762  https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00762           

A Python package to process the data produced by novonix high-precision battery-tester, Gonzalez-Perez V., Journal of open research software, (Mar 2020), DOI:doi.org/10.5334/jors.281 https://openresearchsoftware.metajnl.com/articles/10.5334/jors.281/

Multiscale Lithium-Battery Modeling from Materials to Cells, Li, G., Annual Review of Chemical and Biomolecular Engineering, (Mar 2020), DOI:10.1146/annurev-chembioeng-012120-083016 https://www.annualreviews.org/doi/pdf/10.1146/annurev-chembioeng-012120-083016 (See also SOLBAT)

Transition Metal Migration Can Facilitate Ionic Diffusion in Defect Garnet Based Intercalation Electrodes, Bashian, N., ACS Energy Letters, (Apr 2020), DOI:10.1021/acsenergylett.0c00376 https://pubs.acs.org/doi/abs/10.1021/acsenergylett.0c00376

Lithium Intercalation edge effects and doping implications for graphite anodes, Peng C., Journal of Materials Chemistry A, (Apr 2020), DOI:10.1039/C9TA13862E https://pubs.rsc.org/en/content/articlelanding/2020/ta/c9ta13862e

In-situ fabrication of carbon-metal fabrics as freestanding electrodes for high-performance flexible energy storage devices, Liu X., Energy Storage Materials, (Apr 2020), DOI:10.1016/j.ensm.2020.04.001 https://www.sciencedirect.com/science/article/abs/pii/S2405829720301203

Designer uniform Li plating/stripping through lithium-cobalt alloying hierarchical scaffolds for scalable high-performance Li metal anodes, Liu X., Journal of Energy Chemistry, (Apr 2020), DOI:10.1016/j.jechem.2020.03.059 https://www.sciencedirect.com/science/article/abs/pii/S2095495620301911

Derivation of an Effective Thermal Electrochemical Model for Porous Electrode Batteries using Asymptotic Homogenisation, Hunt, M. J., Journal of Engineering Mathematics, (Apr 2020), DOI:10.1007/s10665-020-10045-8  https://link.springer.com/article/10.1007/s10665-020-10045-8

3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling, Lu, X., Nature Communications, (Apr 2020), DOI:10.1038/s41467-020-15811-x   https://www.nature.com/articles/s41467-020-15811-x (See also Degradation)

Physical Origin of the Differential Voltage Minimum Associated with Lithium Plating in Li-Ion Batteries, O'Kane, S., Journal of The Electrochemical Society, (May 2020), DOI:10.1149/ 1945-7111/ab90ac https://iopscience.iop.org/article/10.1149/1945-7111/ab90ac

Free radicals: making a case for battery modelling, Howey D.A., The Electrochemical Society Interface, (May 2020), DOI:10.1149/2.F03204IF  https://iopscience.iop.org/article/10.1149/2.F03204IF

Development of experimental techniques for parametrization of multi-scale Li-ion battery models, Chen C.-H., Journal of The Electrochemical Society, (May 2020), DOI:10.1149/1945-7111/ab9050  https://iopscience.iop.org/article/10.1149/1945-7111/ab9050

Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics, Gavilán-Arriazu, E. M., Journal of Solid State Electrochemistry, (Jun 2020), DOI:10.1007/s10008-020-04717-9 https://link.springer.com/article/10.1007%2Fs10008-020-04717-9

Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries, Gayon-Lombardo, A., npj Computational Materials, (Jun 2020), DOI:10.1038/s41524-020-0340-7 https://www.nature.com/articles/s41524-020-0340-7

Fostering a sustainable community in batteries, Baker J.A., ACS Energy Letters, (Jun 2020), DOI:10.1021/acsenergylett.0c01304  https://pubs.acs.org/doi/10.1021/acsenergylett.0c01304

Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence for smart battery management systems, Wu, B., Energy and AI, (Jul 2020), DOI:10.1016/j.egyai.2020.100016 https://www.sciencedirect.com/science/article/pii/S2666546820300161

Chemical trends in the lattice thermal conductivity of NMC battery cathodes, Yang H., Chemistry of Materials, (Jul 2020), DOI:10.1021/acs.chemmater.0c02908 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.0c02908

Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes, Wang, A. A., Electrochimica Acta, (Jul 2020), DOI:10.1016/j.electacta.2020.136688 https://www.sciencedirect.com/science/article/pii/S0013468620310811

Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Data in Brief, (Jul 2020), DOI:10.1016/j.dib.2020.106033 https://www.sciencedirect.com/science/article/pii/S2352340920309276 (See also Degradation)

Probing heterogeneity in Li-ion batteries with coupled multiscale models of electrochemistry and thermal transport using tomographic domains, Tranter, T. G., Journal of The Electrochemical Society, (Jul 2020), DOI:10.1149/1945-7111/aba44b  https://iopscience.iop.org/article/10.1149/1945-7111/aba44b

Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries, Davies, D. W., IOP SciNotes, (Jul 2020), DOI:10.1088/2633-1357/ab9750 https://iopscience.iop.org/article/10.1088/2633-1357/ab9750 (See also FutureCat)

Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., Applied Energy Materials, (Aug 2020), DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also NEXGENNA and Degradation)

The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead, Nguyen, T., npj Computational Materials, (Aug 2020), DOI:10.1038/s41524-020-00386-4 https://www.nature.com/articles/s41524-020-00386-4

Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements, Robinson, J., Journal of The Electrochemical Society, (Aug 2020), DOI:10.1149/1945-7111/abb174  https://iopscience.iop.org/article/10.1149/1945-7111/abb174/meta (See also LiSTAR)

Electronic Structure Calculations in Electrolyte Solutions: Methods for Neutralization of Extended Charged Interfaces, Bhandari, A., Journal of Chemical Physics, (Sep 2020), DOI:10.1063/5.0021210  https://aip.scitation.org/doi/abs/10.1063/5.0021210

Voltage Hysteresis Model for Silicon Electrodes for Lithium Ion Batteries, Including Multi-Step Phase Transformations, Crystallization and Amorphization, Jiang, Y., Journal of The Electrochemical Society, (Sep 2020), DOI:10.1149/1945-7111/abbbba  https://iopscience.iop.org/article/10.1149/1945-7111/abbbba

A Suite of Reduced-Order Models of a Single-Layer Lithium-ion Pouch Cell, Marquis, S., Journal of the Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abbce4 https://iopscience.iop.org/article/10.1149/1945-7111/abbce4

An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Journal of The Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abc4c1 https://iopscience.iop.org/article/10.1149/1945-7111/abc4c1 (See also Degradation)

4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of The Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abbfd9  https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9 (See also LiSTAR and Characterisation)

Communication-Identifying and Managing Reversible Capacity Losses that falsify cycle ageing tests of Li-ion cells, Burrell R., Journal of The Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abbce1  https://iopscience.iop.org/article/10.1149/1945-7111/abbce1

The Cell Cooling Coefficient as a Design Tool to Optimise Thermal Management of Lithium-Ion Cells in Battery Packs, Hales, A., eTransportation, (Nov 2020), DOI:10.1016/j.etran.2020.100089 https://www.sciencedirect.com/science/article/pii/S2590116820300473

Finding a better fit for lithium ion batteries: A simple, novel, load dependent, modified equivalent circuit model and parameterization method, Hua, X., Journal of Power Sources, (Nov 2020), DOI:10.1016/j.jpowsour.2020.229117 https://www.sciencedirect.com/science/article/abs/pii/S0378775320314129

Voltage hysteresis during lithiation/delithiation of graphite associated with meta-stable carbon stackings, Mercer, M., Journal of Materials Chemistry A, (Nov 2020), DOI:10.1039/D0TA10403E https://pubs.rsc.org/en/content/articlehtml/2020/ta/d0ta10403e

Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-Ion Batteries, Heenan, T. M. M., Advanced Energy Materials, (Nov 2020), DOI:10.1002/aenm.202002655  https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202002655 (See also Degradation)

Evidence for a Solid-Electrolyte Inductive Effect in the Superionic Conductor Li10Ge1–x SnxP2S12, Culver, S. P., Journal of the American Chemical Society, (Dec 2020), DOI:10.1021/jacs.0c10735  https://pubs.acs.org/doi/abs/10.1021/jacs.0c10735

Thermodynamically consistent parameterization of electrochemical-potential derivatives within non-neutral, concentrated electrolytic fluids, Goyal, P., Electrochimica Acta, (Dec 2020), DOI:10.1016/j.electacta.2020.137638 https://www.sciencedirect.com/science/article/abs/pii/S0013468620320314

The Application of Data-Driven Methods and Physics-Based Learning for Improving Battery Safety, Finegan, D. P., Joule, (Dec 2020), DOI:10.1016/j.joule.2020.11.018 https://www.sciencedirect.com/science/article/abs/pii/S2542435120305626

Communication—Prediction of Thermal Issues for Larger Format 4680 Cylindrical Cells and Their Mitigation with Enhanced Current Collection, Tranter, T. G., Journal of The Electrochemical Society, (Dec 2020), DOI:10.1149/1945-7111/abd44f  https://iopscience.iop.org/article/10.1149/1945-7111/abd44f

The prismatic surface cell cooling coefficient: A novel cell design optimisation tool & thermal parameterization method for a 3D discretised electro-thermal equivalent-circuit model, Hua, X., eTransportation, (Jan 2021), DOI:0.1016/j.etran.2020.100099 https://www.sciencedirect.com/science/article/pii/S2590116820300576

A Shrinking-Core Model for the Degradation of High-Nickel Cathodes (NMC811) in Li-Ion Batteries: Passivation Layer Growth and Oxygen Evolution, Ghosh, A., Journal of The Electrochemical Society, (Jan 2021), DOI:10.1149/1945-7111/abdc71  https://iopscience.iop.org/article/10.1149/1945-7111/abdc71

Hybridizing Lead–Acid Batteries with Supercapacitors: A Methodology, Luo, X., Energies, (Jan 2021), DOI:10.3390/en14020507  https://www.mdpi.com/1996-1073/14/2/507

Current Imbalance in Parallel Battery Strings Measured Using a Hall‐Effect Sensor Array, Luca, R., Energy Technology, (Feb 2021), DOI:10.1002/ente.202001014 https://onlinelibrary.wiley.com/doi/full/10.1002/ente.202001014

Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management, Lander, L., Applied Energy, (Mar 2021), DOI:10.1016/j.apenergy.2021.116737 https://www.sciencedirect.com/science/article/abs/pii/S0306261921002518

Solvent engineered synthesis of layered SnO for high-performance anodes, Jaskaniec, S., 2D Materials and Applications, (Mar 2021), DOI:10.1038/s41699-021-00208-1 https://www.nature.com/articles/s41699-021-00208-1

Lithium-Ion Diagnostics: The First Quantitative In-Operando Technique for Diagnosing Lithium-Ion Battery Degradation Modes under Load with Realistic Thermal Boundary Conditions, Prosser, R., Journal of the Electrochemical Society, (Mar 2021), DOI:10.1149/1945-7111/abed28  https://iopscience.iop.org/article/10.1149/1945-7111/abed28/meta

Lithium Ion Battery Degradation: What you need to know, Edge, J. S., Physical Chemistry Chemical Physics, (Mar 2021), DOI:10.1039/D1CP00359C  https://pubs.rsc.org/en/content/articlehtml/2021/cp/d1cp00359c

How Machine Learning Will Revolutionize Electrochemical Sciences, Mistry, A., ACS Energy Letters, (Mar 2021), DOI:10.1021/acsenergylett.1c00194 https://pubs.acs.org/doi/abs/10.1021/acsenergylett.1c00194

Solvent engineered synthesis of layered SnO for high-performance anodes, Jaskaniec, S., Nature (npj 2D Materials and Applications), (Mar 2021), DOI:10.1038/s41699-021-00208-1 https://www.nature.com/articles/s41699-021-00208-1

Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion, Kench, S., Nature Machine Intelligence, (Apr 2021), DOI:10.1038/s42256-021-00322-1 https://www.nature.com/articles/s42256-021-00322-1

Guiding the Design of Heterogeneous Electrode Microstructures for Li‐Ion Batteries: Microscopic Imaging, Predictive Modelling, and Machine Learning, Xu, H., Advanced Energy Materials, (Apr 2021),  DOI:10.1002/aenm.202003908 https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202003908

Optimal cell tab design and cooling strategy for cylindrical lithium-ion batteries, Li, S., Journal of Power Sources, (Apr 2021), DOI:10.1016/j.jpowsour.2021.229594 https://www.sciencedirect.com/science/article/abs/pii/S0378775321001403

Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries, Pang, M., Materials Today, (Apr 2021), DOI:10.1016/j.mattod.2021.02.011 https://www.sciencedirect.com/science/article/abs/pii/S1369702121000572

Recent advances in acoustic diagnostics for electrochemical power systems, Majasan, J., Journal of Physics: Energy, (Apr 2021), DOI:10.1088/2515-7655/abfb4a https://iopscience.iop.org/article/10.1088/2515-7655/abfb4a

Intercalation Voltages for Spinel LixMn2O4 (0≤ x≤ 2) Cathode Materials: Calibration of Calculations with the ONETEP Linear-Scaling DFT Code, Ledwaba, R.S., Materials Today Communications, (Apr 2021), DOI:10.1016/j.mtcomm.2021.102380 https://www.sciencedirect.com/science/article/abs/pii/S235249282100372X

Bayesian Parameter Estimation Applied to the Li-ion Battery Single Particle Model with Electrolyte Dynamics, Aitio, A., IFAC-PapersOnLine, (Apr 2021), DOI:10.1016/j.ifacol.2020.12.1770 https://www.sciencedirect.com/science/article/pii/S2405896320323788

Asymptotic Reduction of a Lithium-ion Pouch Cell Model, Timms, R., SIAM Journal on Applied Mathematics, (May 2021), DOI:10.1137/20M1336898 https://epubs.siam.org/doi/abs/10.1137/20M1336898

Python Battery Mathematical Modelling (PyBaMM), Sulzer, V., Journal of open research software, (Jun 2021), DOI:10.5334/jors.309  https://openresearchsoftware.metajnl.com/articles/10.5334/jors.309/

DandeLiion v1: An extremely fast solver for the Newman model of lithium-ion battery (dis) charge, Korotkin, I., Journal of The Electrochemical Society, (Jun 2021), DOI:10.1149/1945-7111/ac085f  https://iopscience.iop.org/article/10.1149/1945-7111/ac085f

Physical Modelling of the Slow Voltage Relaxation Phenomenon in Lithium-Ion Batteries, Kirk, T. L., Journal of The Electrochemical Society, (Jun 2021), DOI:10.1149/1945-7111/ac0bf7 https://iopscience.iop.org/article/10.1149/1945-7111/ac0bf7

Heat Generation and a Conservation Law for Chemical Energy in Lithium-ion Batteries, Richardson, G., Electrochimica Acta, (Jul 2021), DOI:10.1016/j.electacta.2021.138909 https://www.sciencedirect.com/science/article/abs/pii/S0013468621011993

Financial Viability of Electric Vehicle Lithium-Ion Battery Recycling, Lander, L., iScience, (Jul 2021), DOI:10.1016/j.isci.2021.102787 https://www.sciencedirect.com/science/article/pii/S2589004221007550

The challenge and opportunity of battery lifetime prediction from field data, Sulzer V., Joule, (Jul 2021), DOI:10.1016/j.joule.2021.06.005 https://www.sciencedirect.com/science/article/abs/pii/S2542435121002932

A consensus algorithm for multi-objective battery balancing, Barreras J.V., Energies, (Jul 2021), DOI:10.3390/en14144279  https://www.mdpi.com/1996-1073/14/14/4279

Potentiometric MRI of a superconcentrated lithium electrolyte: testing the irreversible thermodynamics approach, A.A. Wang, ACS Energy Letters, (Aug 2021), DOI:10.1021/acsenergylett.1c01213  https://pubs.acs.org/doi/10.1021/acsenergylett.1c01213 (See also Degradation)

Systematic derivation and validation of a reduced thermal-electrochemical model for lithium-ion batteries using asymptotic methods, Planella, F. B., Electrochimica Acta, (Aug 2021), DOI:10.1016/j.electacta.2021.138524 https://www.sciencedirect.com/science/article/pii/S0013468621008148

ReLiB: Recycling and reuse of lithium-ion batteries 

Can Electric Vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point, Raugei, M., Journal of Cleaner Production, (Nov 2018), DOI:10.1016/j.jclepro.2018.08.107   https://doi.org/10.1016/j.jclepro.2018.08.107

Net Energy Analysis must not compare apples and oranges, Raugei, M., Nature Energy, (Jan 2019), DOI:10.1038/s41560-019-0327-0  https://doi.org/10.1038/s41560-019-0327-0

Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles , Raugei, M., Journal of Cleaner Production, (Mar 2019), DOI:10.1016/j.jclepro.2018.12.237 https://www.sciencedirect.com/science/article/pii/S0959652618339593

Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies, Rajaeifar, M. A., Renewable and Sustainable Energy Reviews, (May 2019), DOI:10.1016/j.rser.2019.05.004 https://www.sciencedirect.com/science/article/pii/S1364032119303107?via%3Dihub

Production of biogenic nanoparticles for the reduction of 4-nitrophenol and oxidative laccase-like reactions., Capeness, M. J., Frontiers in  Microbiology, (May 2019), DOI:10.3389/fmicb.2019.00997  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520526

Energy Return On Investment – setting the record straight, Raugei, M., Joule, (Aug 2019), DOI:10.1016/j.joule.2019.07.020 https://www.sciencedirect.com/science/article/abs/pii/S2542435119303642

Our Waste, Our resources; A Strategy for England' - Switching to a circular economy through the use of extended producer responsibility, Dawson, L., Environmental Law Review, (Sep 2019), DOI:10.1177/1461452919851943  https://journals.sagepub.com/doi/10.1177/1461452919851943

The role of electric vehicles in near-term mitigation pathways, Hill, G., Applied Energy, (Oct 2019), DOI:10.1016/j.apenergy.2019.04.107 https://www.sciencedirect.com/science/article/pii/S0306261919307834

Recycling End of Life Lithium Ion Batteries For A Circular Economy: Beyond Pyrometallurgy, Harper, G., Nature, (Nov 2019), DOI:10.1038/s41586-019-1682-5 https://www.nature.com/articles/s41586-019-1682-5

Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents, Al-Murshedi, A. Y. M., The International Journal of Surface Engineering and Coatings, (Nov 2019), DOI:10.1080/00202967.2019.1671062 https://www.tandfonline.com/doi/abs/10.1080/00202967.2019.1671062

What are the energy and environmental impacts of adding battery storage to photovoltaics?, Raugei, M., Energy Technology, (Jan 2020), DOI:10.1002/ente.201901146 https://onlinelibrary.wiley.com/doi/abs/10.1002/ente.201901146

Beyond the EVent horizon: Technological Obsolescence in UK Battery Electric Vehicles from 2011 – 2025, Skeete, J. P., Energy Research & Social Science, (May 2020), DOI:10.1016/j.erss.2020.101581 https://www.sciencedirect.com/science/article/pii/S2214629620301572

Disassembly of Li Ion Cells—Characterization and Safety Considerations of a Recycling Scheme, Marshall, J., Metals, (Jun 2020), DOI:10.3390/met10060773  https://www.mdpi.com/2075-4701/10/6/773

The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., Journal of Chemical Education, (Jun 2020), DOI:10.1021/acs.jchemed.0c00282  https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282 (See also CATMAT and NEXTRODE)

Experimental Visualization of Commercial Lithium Ion Battery Cathodes: Distinguishing Between the Microstructure Components Using Atomic Force Microscopy, Terreblanche, J. S., The Journal of Physical Chemistry C, (Jun 2020), DOI:10.1021/acs.jpcc.0c02713 https://pubs.acs.org/doi/10.1021/acs.jpcc.0c02713

A review of physical processes used in the safe recycling of lithium ion batteries, Sommerville, R., Sustainable Materials and Technologies, (Jul 2020), DOI:10.1016/j.susmat.2020.e00197 https://www.sciencedirect.com/science/article/abs/pii/S2214993719303501

A circular economy for electric vehicle batteries: driving the change, Ahuja, J., Journal of Property, Planning and Environmental Law, (Aug 2020), DOI:10.1108/JPPEL-02-2020-0011 https://www.emerald.com/insight/content/doi/10.1108/JPPEL-02-2020-0011

Circular economy strategies for electric vehicle batteries reduce reliance on raw materials, Baars, J., Nature Sustainability, (Sep 2020), DOI:10.1038/s41893-020-00607-0 https://www.nature.com/articles/s41893-020-00607-0

A rapid neural network–based state of health estimation scheme for screening of end of life electric vehicle batteries, Rastegarpanah, A., Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, (Sep 2020), DOI:10.1177/0959651820953254 https://journals.sagepub.com/doi/full/10.1177/0959651820953254

The EV revolution: The road ahead for critical raw materials demand, Jones, B., Applied Energy, (Oct 2020), DOI:10.1016/j.apenergy.2020.115072 https://www.sciencedirect.com/science/article/pii/S0306261920305845

The EV revolution: The road ahead for critical raw materials demand, Jones, B., Applied Energy, (Oct 2020), DOI:10.1016/j.apenergy.2020.115072 https://www.sciencedirect.com/science/article/pii/S0306261920305845

Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale, (Oct 2020), DOI:10.1039/D0NR04589F https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also Characterisation and Degradation)

A qualitative assessment of lithium ion battery recycling processes, Sommerville, R., Resources, Concervation and Recycling, (Oct 2020), DOI:10.1016/j.resconrec.2020.105219 https://www.sciencedirect.com/science/article/abs/pii/S0921344920305358

Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents, Pateli, I. M., Green Chemistry, (Nov 2020), DOI:10.1039/D0GC03491F https://pubs.rsc.org/en/content/articlelanding/2020/gc/d0gc03491f

Does Energy Storage Provide a Profitable Second Life for EV batteries?, Wu, W., Energy Economics, (Nov 2020), DOI:10.1016/j.eneco.2020.105010 https://www.sciencedirect.com/science/article/pii/S0140988320303509

A review of current collectors for lithium-ion batteries, Zhu, P., Journal of Power Sources, (Dec 2020), DOI:10.1016/j.jpowsour.2020.229321 https://www.sciencedirect.com/science/article/abs/pii/S0378775320316098

Methodologies for Large-Size Pouch Lithium-Ion Batteries End-of-Life Gateway Detection in the Second-Life Application, Attidekou, P. S., Journal of The Electrochemical Society, (Dec 2020), DOI:10.1149/1945-7111/abd1f1  https://iopscience.iop.org/article/10.1149/1945-7111/abd1f1

Thermal and mechanical abuse of electric vehicle pouch cell modules, Christensen, P., Applied Thermal Engineering, (Jan 2021), DOI:10.1016/j.applthermaleng.2021.116623 https://www.sciencedirect.com/science/article/abs/pii/S135943112100079X

A Unified Method for the Recovery of Metals from Chalcogenides, Bevan, F., ACS Sustainable Chemistry Engineering, (Feb 2021), DOI:10.1021/acssuschemeng.0c09120 https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.0c09120

A Training Free Technique for 3D Object Recognition using the Concept of Vibration, Energy and Frequency, Joshi, P., Computers & Graphics, (Feb 2021), DOI:10.1016/j.cag.2021.01.014 https://www.sciencedirect.com/science/article/abs/pii/S0097849321000145

Simultaneous Tactile Exploration and Grasp Refinement for Unknown Objects, de Farias, C., IEEE Robotics and Automation Letters, (Mar 2021), DOI:10.1109/LRA.2021.3063074 https://ieeexplore.ieee.org/abstract/document/9366782

Towards robotizing the processes of testing lithium-ion batteries, Rastegarpanah, A., Proceedings of the IMechE, Part 1: Journal of Systems and Control Engineering, (Mar 2021), DOI:10.1177/0959651821998599 https://journals.sagepub.com/doi/full/10.1177/0959651821998599

Towards Robotizing the Processes of Testing Lithium-ion Batteries, Rastegarpanah, A., SAGE journals, (Mar 2021), DOI:10.1177/0959651821998599 https://journals.sagepub.com/doi/full/10.1177/0959651821998599

Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic Environments, Reza Azizi, M., Robotics, (Mar 2021), DOI:10.3390/robotics10010048 https://www.mdpi.com/2218-6581/10/1/48

Controlling Radiolysis Chemistry on the Nanoscale in Liquid Cell Scanning Transmission Electron Microscopy, Lee, J., Physical Chemistry Chemical Physics, (Mar 2021), DOI:10.1039/D0CP06369J   https://pubs.rsc.org/en/content/articlehtml/2021/cp/d0cp06369j (See also Characterisation)

A Training Free Technique for 3D Object Recognition using the Concept of Vibration, Energy and Frequency, Joshi, P., Computers & Graphics, (Apr 2021), DOI:10.1016/j.cag.2021.01.014 https://www.sciencedirect.com/science/article/abs/pii/S0097849321000145

Lithium ion battery recycling using high-intensity ultrasonication, Lei C., Green Chemistry, (Jun 2021), DOI:10.1039/D1GC01623G https://pubs.rsc.org/en/content/articlelanding/2021/gc/d1gc01623gdoi.org/10.1039/D1GC01623G

NEXTRODE – Electrode Manufacturing

The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., Journal of Chemical Education, (Jun 2020), DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282 (See also ReLiB and CATMAT)

Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates, Kazakli, M., Journal of Membrane Science, (Aug 2020), DOI:10.1016/j.memsci.2020.118640 https://www.sciencedirect.com/science/article/pii/S0376738820312163

4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes, Ziesche, R. F., Journal of Imaging, (Dec 2020), DOI:10.3390/jimaging6120136  https://www.mdpi.com/2313-433X/6/12/136 (See also Characterisation)

Multi-Layered Composite Electrodes of High Power Li4Ti5O12 and High Capacity SnO2 for Smart Lithium Ion Storage, Ho Lee, S., Energy Storage Materials, (Feb 2021), DOI:10.1016/j.ensm.2021.02.010 https://www.sciencedirect.com/science/article/abs/pii/S2405829721000532

A review of metrology in Li-ion electrode coating processes, Reynolds C.D., Materials & Design, (Jul 2021), DOI:10.1016/j.matdes.2021.109971 https://www.sciencedirect.com/science/article/pii/S0264127521005256?via%3Dihub

CATMAT – Next Generation Lithium-ion Cathode Materials 

The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., Journal of Chemical Education, (Jun 2020), DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282 (See also ReLiB and NEXTRODE)

The role of Ni and Co in supressing O-loss in Li-rich layerd cathodes, Boivin E., Advanced Functional Materials, (Aug 2020), DOI:10.1002/adfm.202003660 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202003660 (See also SOLBAT)

First-cycle voltage hysteresis in Li-rich 3 d cathodes associated with molecular O2 trapped in the bulk, House, R. A., Nature Energy, (Sep 2020), DOI:10.1038/s41560-020-00697-2 https://www.nature.com/articles/s41560-020-00697-2 (See also SOLBAT)

Redox Chemistry and the Role of Trapped Molecular O2 in Li-Rich Disordered Rocksalt Oxyfluoride Cathodes, Sharpe, R., Journal of the American Chemical Society, (Dec 2020), DOI:10.1021/jacs.0c10270  https://pubs.acs.org/doi/abs/10.1021/jacs.0c10270

The role of O2 in O-redox cathodes for Li-ion batteries, House R.A., Nature Energy, (Mar 2021),  DOI:10.1038/s41560-021-00780-2  https://www.nature.com/articles/s41560-021-00780-2

Reduced variance analysis of molecular dynamics simulations by linear combination of estimators, Coles, S. W., The Journal of Chemical Physics, (May 2021), DOI:10.1063/5.0053737 https://aip.scitation.org/doi/10.1063/5.0053737

Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes, House R.A., Nature Communications, (May 2021), DOI:10.1038/s41467-021-23154-4 https://www.nature.com/articles/s41467-021-23154-4 (See also SOLBAT)

FutureCat – Next-generation Li-ion cathode materials 

Evaluating lithium diffusion mechanism in the complex spinel Li2NiGe3O8, Martin D.Z.C., Physical Chemistry Chemical Physics, (Oct 2019), DOI:10.1039/C9CP02907A https://pubs.rsc.org/en/content/articlelanding/2019/CP/C9CP02907A

Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials, McClelland, I., Annual Review of Materials Research, (May 2020), DOI:10.1146/annurev-matsci-110519-110507 https://www.annualreviews.org/doi/full/10.1146/annurev-matsci-110519-110507

Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries, Davies, D. W., IOP SciNotes, (Jul 2020), DOI:10.1088/2633-1357/ab9750 https://iopscience.iop.org/article/10.1088/2633-1357/ab9750 (See also Multi-scale Modelling)

Revisiting metal fluorides as lithium-ion battery cathodes, Hua, X., Nature Materials, (Jan 2021),  DOI:10.1038/s41563-020-00893-1  https://www.nature.com/articles/s41563-020-00893-1

Non-equilibrium metal oxides via reconversion chemistry in lithium-ion batteries, Hua, X., Nature Communications, (Jan 2021), DOI:10.1038/s41467-020-20736-6 https://www.nature.com/articles/s41467-020-20736-6

In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation, McClelland, I., ACS Applied Energy Materials, (Jan 2021), DOI:10.1021/acsaem.0c02722  https://pubs.acs.org/doi/abs/10.1021/acsaem.0c02722 (See also SOLBAT)

Ab initio random structure searching for battery cathode materials, Lu, Z., The Journal of Chemical Physics, (May 2021), DOI:10.1063/5.0049309  https://aip.scitation.org/doi/10.1063/5.0049309

Insights Into the Electric Double-Layer Capacitance of Two-Dimensional Electrically Conductive Metal-Organic Frameworks, Gittins, J. W., Journal of Materials Chemistry A, (Jun 2021), DOI:10.1039/D1TA04026J

https://pubs.rsc.org/en/content/articlelanding/2021/TA/D1TA04026J

Perspectives for next generation lithium-ion battery cathode materials, Booth S.G., APL Materials, (Oct 2021), DOI:10.1063/5.0051092  https://aip.scitation.org/doi/pdf/10.1063/5.0051092 (See also Degradation)

Beyond Lithium Ion 

SOLBAT: Solid-state metal anode batteries

Selective and Facile Synthesis of Sodium Sulfide and Sodium Disulfide Polymorphs, El-Shinawi, H., Inorganic Chemistry, (Jun 2018), DOI:10.1021/acs.inorgchem.8b00776 https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b00776

Na1.5La1.5TeO6: Na+ conduction in a novel Na-rich double perovskite, Amores,M. , Chemical Communications, (Aug 2018), DOI:10.1039/C8CC03367F https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc03367f

Lithium Transport in Li4.4M0.4M′0.6S4 (M = Al3+, Ga3+, and M′ = Ge4+, Sn4+): Combined Crystallographic, Conductivity, Solid State NMR, and Computational Studies, Leube, B. T. , Chemistry of Materials, (Sep 2018), DOI:10.1021/acs.chemmater.8b03175 https://pubs.acs.org/doi/10.1021/acs.chemmater.8b03175

Low-Dose Aberration-Free Imaging of Li-Rich Cathode Materials at Various States of Charge Using Electron PtychographyJuan, Lozano, G., Nano Letters, (Sep 2018), DOI:10.1021/acs.nanolett.8b02718

7Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries, Marbella, L. E. , Chemistry of Materials, (Apr 2019), DOI:10.1021/acs.chemmater.8b04875 https://pubs.acs.org/doi/full/10.1021/acs.chemmater.8b04875

What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?, House, R. A., Chemistry of Materials, (Apr 2019), DOI:10.1021/acs.chemmater.9b00227 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00227

Nature of the “Z”-phase in Layered Na-ion Battery Cathodes, Somerville, J. W., Energy & Environmental Sciences, (May 2019), DOI:10.1039/C8EE02991A https://pubs.rsc.org/en/content/articlelanding/2019/EE/C8EE02991A

Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries, Cowan, A., Annual Review of Analytical Chemistry, (Jun 2019), DOI:10.1146/annurev-anchem-061318-115303 https://www.annualreviews.org/doi/abs/10.1146/annurev-anchem-061318-115303

Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells, Kasemchainan, J., Nature Materials, (Jul 2019), DOI:10.1038/s41563-019-0438-9 https://www.nature.com/articles/s41563-019-0438-9

Co-spray printing of LiFePO4 and PEO-Li1.5Al0.5Ge1.5(PO4)3 hybrid electrodes for all-solid-state Li-ion battery applications, Bu, J., Journal of Materials Chemistry A, (Aug 2019), DOI:10.1039/C9TA03824H  https://pubs.rsc.org/en/content/articlelanding/2019/TA/C9TA03824H

Dental Resin Monomer Enables Unique NbO2/Carbon Lithium‐Ion Battery Negative Electrode with Exceptional Performance, Ji, Q., Advanced Functional Materials, (Aug 2019), DOI:10.1002/adfm.201904961  https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201904961

Dendrite nucleation in lithium-conductive ceramics, Li, G., Physical Chemistry Chemical Physics, (Sep 2019), DOI:10.1039/C9CP03884A  https://pubs.rsc.org/en/content/articlehtml/2019/cp/c9cp03884a

Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes, Naylor, A. J., Journal of Materials Chemistry A, (Sep 2019), DOI:10.1039/C9TA09019C https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta09019c

A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li–S batteries, El-Shinawi, H., Nanoscale, (Oct 2019), DOI:10.1039/C9NR06239D https://pubs.rsc.org/lv/content/articlehtml/2019/nr/c9nr06239d

A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals, Al-Masri, D., Journal of Materials Chemistry A, (Oct 2019), DOI:10.1039/C9TA11175A  https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta11175a

The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte, Liu, J., Joule, (Oct 2019), DOI:10.1016/j.joule.2019.10.001 https://www.sciencedirect.com/science/article/pii/S2542435119304830

Is Nitrogen Present in Li3N·P2S5 Solid Electrolytes Produced by Ball Milling?, Hartley, G. O., Chemistry of Materials, (Nov 2019), DOI:10.1021/acs.chemmater.9b01853 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b01853

Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes, House, R. A., Nature, (Dec 2019), DOI:10.1038/s41586-019-1854-3  https://www.nature.com/articles/s41586-019-1854-3

Sodium/Na β″ Alumina Interface: Effect of Pressure on Voids, Jolly, D. S., ACS Applied Materials & Interfaces, (Dec 2019), DOI:10.1021/acsami.9b17786 https://pubs.acs.org/doi/abs/10.1021/acsami.9b17786

Mechanics of the Ideal Double-Layer Capacitor, Monroe, C. W., Journal of The Electrochemical Society, (Feb 2020), DOI:10.1149/1945-7111/ab6b04 https://iopscience.iop.org/article/10.1149/1945-7111/ab6b04 (See also Multi-scale Modelling)

Dendrites as climbing dislocations in ceramic electrolytes: Initiation of growth, Shishvan, S. S., Journal of Power Sources, (Mar 2020), DOI:10.1016/j.jpowsour.2020.227989 https://www.sciencedirect.com/science/article/abs/pii/S0378775320302925

Multiscale Lithium-Battery Modeling from Materials to Cells, Li, G., Annual Review of Chemical and Biomolecular Engineering, (Mar 2020), DOI:10.1146/annurev-chembioeng-012120-083016  https://www.annualreviews.org/doi/pdf/10.1146/annurev-chembioeng-012120-083016 (See also Multi-scale Modelling)

Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization, Chemical Science, (May 2020), DOI:10.1039/D0SC00463D   https://pubs.rsc.org/en/content/articlehtml/2020/sc/d0sc00463d

Fabrication of Li1+xAlxGe2-x(PO4)3 thin films by sputtering for solid electrolytes, Mousavi, T., Solid State Ionics, (Jul 2020), DOI:10.1016/j.ssi.2020.115397 https://www.sciencedirect.com/science/article/abs/pii/S0167273820304513

2020 roadmap on solid-state batteries, Pasta, M., Journal of Physics: Energy, (Aug 2020), DOI:10.1088/2515-7655/ab95f4  https://iopscience.iop.org/article/10.1088/2515-7655/ab95f4

The role of Ni and Co in supressing O-loss in Li-rich layerd cathodes, Boivin E., Advanced Functional Materials, (Aug 2020), DOI:10.1002/adfm.202003660 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202003660 (See also CATMAT)

Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with Tunable Pore size and, Zuo, X., Applied Materials and Interfaces, (Sep 2020), DOI:10.1021/acsami.0c12747  https://pubs.acs.org/doi/abs/10.1021/acsami.0c12747

First-cycle voltage hysteresis in Li-rich 3 d cathodes associated with molecular O 2 trapped in the bulk, House, R. A., Nature Energy, (Sep 2020), DOI:10.1038/s41560-020-00697-2 https://www.nature.com/articles/s41560-020-00697-2 (See also CATMAT)

Imaging Sodium Dendrite Growth in All‐Solid‐State Sodium Batteries using 23Na T2‐weighted MRI, Rees, G. J., Angewandte Chemie International Edition, (Oct 2020), DOI:10.1002/anie.202013066 https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202013066

Electrochemo-Mechanical Properties of Red Phosphorus Anodes in Lithium, Sodium, and Potassium Ion Batteries, Capone, I., Matter, (Oct 2020), DOI:10.1016/j.matt.2020.09.017 https://www.sciencedirect.com/science/article/pii/S2590238520305154

Computationally Guided Discovery of the Sulfide Li3AlS3 in the Li–Al–S Phase Field: Structure and Lithium Conductivity, Gamon, J., Chemistry of Materials, (Oct 2020), DOI:10.1021/acs.chemmater.9b03230 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b03230

3D Imaging of Lithium Protrusions in Solid‐State Lithium Batteries using X‐Ray Computed Tomography, Hao, S., Advanced Functional Materials, (Dec 2020), DOI:10.1002/adfm.202007564 https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007564

Li1.5La1.5MO6 (M= W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries, Amores, M., Nature Communications, (Dec 2020), DOI:10.1038/s41467-020-19815-5  https://www.nature.com/articles/s41467-020-19815-5

Tracking Lithium Penetration in Solid Electrolyte in 3D by In-situ Synchrotron X-ray Computed Tomography, Hao, S., Nano Energy, (Jan 2021), DOI:10.1016/j.nanoen.2021.105744 https://www.sciencedirect.com/science/article/abs/pii/S2211285521000033

The initiation of void growth during stripping of Li electrodes in solid electrolyte cells, Shishvan, S. S., Journal of Power Sources, (Jan 2021), DOI:10.1016/j.jpowsour.2020.229437 https://www.sciencedirect.com/science/article/abs/pii/S0378775320317201

In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation, McClelland, I., ACS Applied Energy Materials, (Jan 2021), DOI:10.1021/acsaem.0c02722  https://pubs.acs.org/doi/abs/10.1021/acsaem.0c02722 (See also FutureCat)

Ordered LiNi0.5Mn1.5O4 Cathode in Bis (fluorosulfonyl) imide-Based Ionic Liquid Electrolyte: Importance of the Cathode-Electrolyte Interphase, Lee, H. J., Chemistry of Materials, (Feb 2021), DOI:10.1021/acs.chemmater.0c04014  https://pubs.acs.org/doi/10.1021/acs.chemmater.0c04014

Li6SiO4Cl2: A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking, Morscher, A., Chemistry of Materials, (Mar 2021), DOI:10.1021/acs.chemmater.1c00157 https://pubs.acs.org/doi/full/10.1021/acs.chemmater.1c00157

Development of sputtered nitrogen-doped Li1+xAlxGe2-x (PO4) 3 thin films for solid state batteries, Mousavi, T., Solid State Ionics, (Apr 2021), DOI:10.1016/j.ssi.2021.115613 https://www.sciencedirect.com/science/article/abs/pii/S0167273821000667

An assessment of a mechanism for void growth in Li anodes, Roy, U., Extreme Mechanics Letters, (Apr 2021), DOI:10.1016/j.eml.2021.101307 https://www.sciencedirect.com/science/article/abs/pii/S235243162100078X

Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes, House R.A., Nature Communications, (May 2021), DOI:10.1038/s41467-021-23154-4 https://www.nature.com/articles/s41467-021-23154-4 (See also CATMAT)

NEXGENNA – Sodium-ion Batteries

Advances in Organic Anode Materials for Na‐/K‐Ion Rechargeable Batteries, Desai, A. V., ChemSusChem, (Jul 2020), DOI:10.1002/cssc.202001334  https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.202001334

Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., ACS Applied Energy Materials, (Aug 2020), DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also Multi-scale Modelling and Degradation)

Surface engineering strategy using urea to improve the rate performance of Na2Ti3O7 in Na‐ion batteries, Costa S. I. R., Chemistry - A European Journal (Aug 2020) DOI:10.1002/chem.202003129  https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.202003129

Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0. 67Mg0.2Mn0.8O2, Kim, E. J., ACS Applied Energy Materials, (Sep 2020), DOI:10.1021/acsaem.0c01352  https://pubs.acs.org/doi/abs/10.1021/acsaem.0c01352

Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies, Kim, E. J., Journal of Power Sources, (Oct 2020), DOI:10.1016/j.jpowsour.2020.229010 https://www.sciencedirect.com/science/article/pii/S0378775320313070

Extending the Performance Limit of Anodes: Insights from Diffusion Kinetics of Alloying Anodes, Choi, Y., Advanced Energy Materials, (Dec 2020), DOI:10.1002/aenm.202003078 https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202003078

2021 roadmap for sodium-ion batteries, Tapia-Ruiz N., Journal of Physics: Energy, (Jul 2021), DOI:10.1088/2515-7655/ac01ef  https://iopscience.iop.org/article/10.1088/2515-7655/ac01ef

New route to battery grade NaPF6 for Na-ion batteries: expanding the accessible concentration, Ould D.M.C., Angewandte Chemie, (Sep 2021), DOI:10.1002/anie.202111215 https://onlinelibrary.wiley.com/doi/10.1002/anie.202111215

LiSTAR – The Lithium-Sulfur Technology Accelerator

A Highly Sensitive Electrochemical Sensor of Polysulfides in Polymer Lithium-Sulfur Batteries, Meddings, N., Journal of The Electrochemical Society, (May 2020), DOI:10.1149/1945-7111/ab8ce9  https://iopscience.iop.org/article/10.1149/1945-7111/ab8ce9

Toward Practical Demonstration of High-Energy-Density Batteries, Shearing, P. R., Joule, (Jul 2020), DOI:10.1016/j.joule.2020.06.019 https://www.sciencedirect.com/science/article/abs/pii/S2542435120302828

The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery, Di Lecce, D., Journal of Power Sources, (Jul 2020), DOI:10.1016/j.jpowsour.2020.228424 https://www.sciencedirect.com/science/article/abs/pii/S037877532030728X

Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties, Zhang, Z., ACS Applied Materials & Interfaces, (Jul 2020), DOI:10.1021/acsami.0c11190  https://pubs.acs.org/doi/abs/10.1021/acsami.0c11190 (See also Degradation)

Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements, Robinson, J., Journal of The Electrochemical Society, (Aug 2020), DOI:10.1149/1945-7111/abb174 https://iopscience.iop.org/article/10.1149/1945-7111/abb174 (See also Multi-scale Modelling)

4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of The Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abbfd9  https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9 (See also Characterisation and Multi-scale Modelling)

Using In-Situ Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries Characterization: A Review on Recent Developments, Llewellyn, A.V., Condensed Matter, (Nov 2020), DOI:10.3390/condmat5040075  https://www.mdpi.com/2410-3896/5/4/75 (See also Characterisation and Degradation)

Molecular modeling of electrolyte and polysulfide ions for lithium-sulfur batteries, Babar, S., Ionics, (Dec 2020), DOI:10.1007/s11581-020-03860-7  https://link.springer.com/article/10.1007/s11581-020-03860-7

2021 Roadmap on Lithium Sulfur Batteries, Robinson, J., Journal of Physics: Energy, (Jan 2021), DOI:10.1088/2515-7655/abdb9a  https://iopscience.iop.org/article/10.1088/2515-7655/abdb9a

Evaluation and Realization of Safer Mg-S Battery: the Decisive Role of the Electrolyte, Sheng, L., Nano Energy, (Jan 2021), DOI:10.1016/j.nanoen.2021.105832 https://www.sciencedirect.com/science/article/abs/pii/S2211285521000902

A Multiscale X‐Ray Tomography Study of the Cycled‐Induced Degradation in Magnesium–Sulfur Batteries, Du, W., Small Methods, (Mar 2021), DOI:10.1002/smtd.202001193 https://onlinelibrary.wiley.com/doi/full/10.1002/smtd.202001193

Battery Characterisation 

Imaging Dynamic Electrochemical Interfaces

Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications, Bentley, C. L., Analytical Chemistry, (Jun 2020), DOI:10.1021/acs.analchem.0c01540  https://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c01540

Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy, Shkirskiy, V., Analytical Chemistry, (Aug 2020), DOI:10.1021/acs.analchem.0c02358 https://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c02358

4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of The Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abbfd9  https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9 (See also LiSTAR and Multi-scale Modelling)

Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale, (Oct 2020), DOI:10.1039/D0NR04589F  https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also ReLiB and Degradation)

Using In-Situ Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries Characterization: A Review on Recent Developments, Llewellyn, A.V., Condensed Matter, (Nov 2020), DOI:10.3390/condmat5040075  https://www.mdpi.com/2410-3896/5/4/75 (See also LiSTAR and Degradation)

4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes, Ziesche, R. F., Journal of Imaging, (Dec 2020), DOI:10.3390/jimaging6120136  https://www.mdpi.com/2313-433X/6/12/136 (See also NEXTRODE)

Operando Bragg Coherent Diffraction Imaging of LiNi0.8Mn0.1Co0.1O2 Primary Particles within Commercially Printed NMC811 Electrode Sheets, Estandarte, A. K. C., ACS Nano, (Dec 2020), DOI:10.1021/acsnano.0c08575 https://pubs.acs.org/doi/abs/10.1021/acsnano.0c08575 (See also Degradation)

Controlling Radiolysis Chemistry on the Nanoscale in Liquid Cell Scanning Transmission Electron Microscopy, Lee, J., Physical Chemistry Chemical Physics, (Mar 2021), DOI:10.1039/D0CP06369J   https://pubs.rsc.org/en/content/articlehtml/2021/cp/d0cp06369j (See also ReLiB)

What Lies Beneath? Probing Buried Interfaces in Working Batteries

The Origin of Chemical Inhomogeneity in Garnet Electrolytes and its Impact on the Electrochemical Performance, Brugge, R., Journal of Materials Chemistry A, (Jul 2020), DOI:10.1039/D0TA04974C https://pubs.rsc.org/en/content/articlehtml/2020/ta/d0ta04974c

NEWS FEEDS / SOCIAL MEDIA

Back to Top