Scientific Publications

Research from the Faraday Institution’s programme has led to highly cited publications, a suite of patents, and a number of commercial spin-outs.

As of May 2021 the Faraday Institution has contributed over 190 publications to the scientific literature. Almost half of the published research coming out of the Faraday Institution has international collaboration and an additional 40% has intra-UK collaboration, spanning 161 institutions and five continents.

As of May 2021:

  • 91% of Faraday Institution publications appear in top quartile of journals
  • 66% in the top 10% of journals
  • 41% of Faraday Institution papers are in the top 10% most cited papers worldwide

Lithium-ion 

Multi-Scale Modelling

Catalysing surface film formation, Hoster, H.E., Nature Catalysis (Apr 2018) DOI:10.1038/s41929-018-0060-2 https://www.nature.com/articles/s41929-018-0060-2

Solid electrolyte interphase: Can faster formation at lower potentials yield better performance? Antonopoulos, B.K., Electrochimica Acta (Apr 2018) DOI:10.1016/j.electacta.2018.03.007 https://www.sciencedirect.com/science/article/pii/S001346861830495X

Formation of the Solid Electrolyte Interphase at Constant Potentials: a Model Study on Highly Oriented Pyrolytic Graphite, Antonopoulos, B.K., Batteries & Supercaps (Jun 2018) DOI:10.1002/batt.201800029 https://onlinelibrary.wiley.com/doi/full/10.1002/batt.201800029

Quantifying structure dependent responses in Li-ion cells with excess Li spinel cathodes: matching voltage and entropy profiles through mean field models, Schlueter, S., Physical Chemistry Chemical Physics (Jul 2018) DOI:10.1039/C8CP02989J https://pubs.rsc.org/en/Content/ArticleLanding/2018/CP/C8CP02989J

Controlled hydroxy-fluorination reaction of anatase to promote Mg2+ mobility in rechargeable magnesium batteries, Ma, J., Chemical Communications (Aug 2018) DOI:10.1039/C8CC04136A https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc04136a#!divAbstract

Correlated Polyhedral Rotations in the Absence of Polarons During Electrochemical Insertion of Lithium in ReO3, Bashian, N., ACS Energy Letters (Sep 2018) DOI:10.1021/acsenergylett.8b01179 https://pubs.acs.org/doi/10.1021/acsenergylett.8b01179

Oxidation states and ionicity, Walsh, A., Nature Materials (Oct 2018) DOI:10.1038/s41563-018-0165-7 https://www.nature.com/articles/s41563-018-0165-7

Modelling the effects of thermal gradients induced by tab and surface cooling on lithium-ion cell performance, Zhao, Y., J. Electrochem. Soc. (Oct 2018) DOI:10.1149/2.0901813jes http://jes.ecsdl.org/content/165/13/A3169.abstract

Quick-start guide for first-principles modelling of semiconductor interfaces, Park, J.-S., J. Phys. Energy (Nov 2018) DOI:10.1088/2515-7655/aad928 https://arxiv.org/abs/1808.00359

4D Visualisation of In-situ Nano-compression of Li-ion Cathode Materials to Mimic Early Stage Calendering, Shearing, P., Daemi, S.R., Materials Horizons (Dec 2018) DOI:10.1039/C8MH01533C https://pubs.rsc.org/en/content/articlelanding/2019/mh/c8mh01533c#!divAbstract (See also Degradation)

Impact of Anion Vacancies on the Local and Electronic Structures of Iron-Based Oxyfluoride Electrodes, Burbano, M., J. Phys. Chem. Lett. (Jan 2019) DOI:10.1021/acs.jpclett.8b03503 https://pubs.acs.org/doi/10.1021/acs.jpclett.8b03503

Aligned Ionogel Electrolytes for High‐Temperature Supercapacitors, Liu, X., Advanced Science (Jan 2019) DOI:10.1002/advs.201801337 https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201801337

Non-equilibrium crystallization pathways of manganese oxides in aqueous solution, Sun, W., Nature Comms (Feb 2019) DOI:10.1038/s41467-019-08494-6 https://www.nature.com/articles/s41467-019-08494-6

Pyscses: a Python Space-Charge Site-Explicit Solver, Wellock, G.L., J. Open Source Soft. (Mar 2019) DOI:10.21105/joss.01209 https://joss.theoj.org/papers/803ed6dd19f453819bdd3ed9ceadf3b3

Incorporating Dendrite Growth into Continuum Models of Electrolytes: Insights from NMR Measurements and Inverse Modelling, Sethurajan, A.K., J. Electrochem. Soc. (May 2019) DOI:10.1149/2.0921908jes http://jes.ecsdl.org/content/166/8/A1591.abstract

Crystal-torture: A crystal tortuosity module, O’Rourke, C., J.Open Source Soft. (Jun 2019) DOI:10.21105/joss.01306 https://joss.theoj.org/papers/10.21105/joss.01306

The Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium-Ion Batteries, Hales, A., J. Electrochem. Soc. (Jul 2019) DOI:10.1149/2.0191912jes https://iopscience.iop.org/article/10.1149/2.0191912jes

Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: I. Physical Model, Sulzer, V., J. Electrochem. Soc. (Jul 2019) DOI:10.1149/2.0301910jes https://iopscience.iop.org/article/10.1149/2.0301910jes

Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: Part II. Asymptotic Analysis, Sulzer, V., J. Electrochem. Soc. (Jul 2019) DOI:10.1149/2.0441908jes https://iopscience.iop.org/article/10.1149/2.0441908jes

Smart and Hybrid Balancing System: Design, Modeling and Experimental Demonstration, Pinto de Castro, R., IEEE Transactions on Vehicular Technology (Jul 2019) DOI:10.1109/TVT.2019.2929653 https://ieeexplore.ieee.org/abstract/document/8768008

Lithium-ion battery fast charging: A review, Tomaszewska, A., eTransportation (Aug 2019) DOI:10.1016/j.etran.2019.100011 https://www.sciencedirect.com/science/article/pii/S2590116819300116

The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs, Liu, X., Applied Energy (Aug 2019) DOI:10.1016/j.apenergy.2019.04.108 https://www.sciencedirect.com/science/article/pii/S0306261919307810

How to Cool Lithium-Ion Batteries: Optimising Cell Design using a Thermally Coupled Model, Zhao, Y., J. Electrochem. Soc. (Aug 2019) DOI:10.1149/2.0501913jes https://iopscience.iop.org/article/10.1149/2.0501913jes

Communication—Why High-Precision Coulometry and Lithium Plating Studies on Commercial Lithium-Ion Cells Require Thermal Baths, Zulke, A., J. Electrochem. Soc. (Aug 2019) DOI:10.1149/2.0841913jes http://jes.ecsdl.org/content/166/13/A2921

Highly Anisotropic Thermal Transport in LiCoO2, Yang, H., J. Phys. Chem. Lett. (Sep 2019) DOI:10.1021/acs.jpclett.9b02073 https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02073

Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions, Pang, M., Physical Chemistry Chemical Physics (Sep 2019) DOI:10.1039/C9CP03886H https://pubs.rsc.org/no/content/articlelanding/2019/cp/c9cp03886h/unauth#!divAbstract

Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries, Reniers, J., J. Electrochem. Soc. (Sep 2019) DOI:10.1149/2.0281914jes https://iopscience.iop.org/article/10.1149/2.0281914jes/meta

Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review, Li, Y., Renewable and Sustainable Energy Reviews (Oct 2019) DOI:10.1016/j.rser.2019.109254 https://www.sciencedirect.com/science/article/abs/pii/S136403211930454X

Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells, Ai, W., J. Electrochem. Soc. (Oct 2019) DOI:10.1149/2.0122001JES http://jes.ecsdl.org/content/167/1/013512.abstract

Composition-dependent thermodynamic and mass-transport characterization of lithium hexafluorophosphate in propylene carbonate, Hou, T., Electrochimica Acta (Oct 2019) DOI:10.1016/j.electacta.2019.135085 https://www.sciencedirect.com/science/article/pii/S0013468619319565

Exploiting cationic vacancies for increased energy densities in dual-ion batteries, Koketsu, T., Energy Storage Materials (Oct 2019) DOI:10.1016/j.ensm.2019.10.019 https://www.sciencedirect.com/science/article/pii/S2405829719310153

An asymptotic derivation of a single particle model with electrolyte, Marquis, S, J. Electrochem. Soc. (Nov 2019) DOI:10.1149/2.0341915jes http://jes.ecsdl.org/content/166/15/A3693.short

Battery Safety: Data-Driven Prediction of Failure, Finegan, D. P., Joule (Nov 2019) DOI:10.1016/j.joule.2019.10.013 https://www.sciencedirect.com/science/article/abs/pii/S254243511930529X

Transitions of lithium occupation in graphite: A physically informed model in the dilute lithium occupation limit supported by electrochemical and thermodynamic measurements, Mercer, M., Electrochimica Acta (Nov 2019) DOI:10.1016/j.electacta.2019.134774 https://www.sciencedirect.com/science/article/pii/S0013468619316457

Multiscale Electrolyte Transport Simulations for Lithium-Ion Batteries, Hanke, F., J. Electrochem. Soc. (Nov 2019) DOI:10.1149/2.0222001JES https://iopscience.iop.org/article/10.1149/2.0222001JES/meta

Native Defects and their Doping Response in the Lithium Solid Electrolyte Li7La3Zr2O12, Squires, A. G., Chem. Mater. (Dec 2019) DOI:10.1021/acs.chemmater.9b04319 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b04319

Descriptors for Electron and Hole Charge Carriers in Metal Oxides, Davies, D. W., J. Phys. Chem. Lett. (Dec 2019) DOI:10.1021/acs.jpclett.9b03398 https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b03398#

Effect of Temperature on The Kinetics of Electrochemical Insertion of Li-Ions into a Graphite Electrode Studied by Kinetic Monte Carlo, Gavilán-Arriazu, E. M., J. Electrochem. Soc. (Jan 2020) DOI:10.1149/2.0332001JES http://jes.ecsdl.org/content/167/1/013533.full

The Surface Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium-Ion Battery Pouch Cells, Hales, A., J. Electrochem. Soc. (Jan 2020) DOI:10.1149/1945-7111/ab6985 https://iopscience.iop.org/article/10.1149/1945-7111/ab6985/meta

Generalised single particle models for high-rate operation of graded lithium-ion electrodes: systematic derivation and validation, Richardson, G., Electrochimica Acta (Feb 2020) DOI:10.1016/j.electacta.2020.135862 https://www.sciencedirect.com/science/article/pii/S0013468620302541

Mechanics of the Ideal Double-Layer Capacitor, Monroe, C. W., J. Electrochem. Soc. (Feb 2020) DOI:10.1149/1945-7111/ab6b04 https://iopscience.iop.org/article/10.1149/1945-7111/ab6b04 (See also SOLBAT)

Parameterization of prismatic lithium–iron–phosphate cells through a streamlined thermal/electrochemical model, Chu, H. N., Journal of Power Sources (Mar 2020) DOI:10.1016/j.jpowsour.2020.227787 https://www.sciencedirect.com/science/article/abs/pii/S0378775320300902

A practical approach to large scale electronic structure calculations in electrolyte solutions via continuum-embedded linear-scaling DFT, Dziedzic, J., J. of Physical Chemistry C (Mar 2020) DOI:10.1021/acs.jpcc.0c00762 https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00762

Multiscale Lithium-Battery Modeling from Materials to Cells, Li, G., Annual Review of Chemical and Biomolecular Engineering (Mar 2020) DOI:10.1146/annurev-chembioeng-012120-083016 https://www.annualreviews.org/doi/pdf/10.1146/annurev-chembioeng-012120-083016 (See also SOLBAT)

Transition Metal Migration Can Facilitate Ionic Diffusion in Defect Garnet Based Intercalation Electrodes, Bashian, N., ACS Energy Letters (Apr 2020) DOI:10.1021/acsenergylett.0c00376 https://pubs.acs.org/doi/abs/10.1021/acsenergylett.0c00376#

Derivation of an Effective Thermal Electrochemical Model for Porous Electrode Batteries using Asymptotic Homogenisation, Hunt, M. J., Journal of Engineering Mathematics (Apr 2020) DOI:10.1007/s10665-020-10045-8 https://link.springer.com/article/10.1007/s10665-020-10045-8#additional-information

3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling, Lu, X., Nature Comms (Apr 2020) DOI:10.1038/s41467-020-15811-x https://www.nature.com/articles/s41467-020-15811-x#Ack1 (See also Degradation)

Physical Origin of the Differential Voltage Minimum Associated with Lithium Plating in Li-Ion Batteries, O’Kane, S., Journal of The Electrochemical Society (May 2020) DOI:10.1149/ 1945-7111/ab90ac https://iopscience.iop.org/article/10.1149/1945-7111/ab90ac/meta

Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics, Gavilán-Arriazu, E. M., Journal of Solid State Electrochemistry (Jun 2020) DOI:10.1007/s10008-020-04717-9 https://link.springer.com/article/10.1007%2Fs10008-020-04717-9

Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries, Gayon-Lombardo, A., npj Computational Materials (Jun 2020) DOI:10.1038/s41524-020-0340-7 https://www.nature.com/articles/s41524-020-0340-7

Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence for smart battery management systems, Wu, B., Energy and AI (Jul 2020) DOI:10.1016/j.egyai.2020.100016 https://www.sciencedirect.com/science/article/pii/S2666546820300161#sec0015

Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes, Wang, A. A., Electrochimica Acta (Jul 2020) DOI:10.1016/j.electacta.2020.136688 https://www.sciencedirect.com/science/article/pii/S0013468620310811

Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Data in Brief (Jul 2020) DOI:10.1016/j.dib.2020.106033 https://www.sciencedirect.com/science/article/pii/S2352340920309276#ack0001 (See also Degradation)

Probing heterogeneity in Li-ion batteries with coupled multiscale models of electrochemistry and thermal transport using tomographic domains, Tranter, T. G., J. Electrochem. Soc. (Jul 2020) DOI:10.1149/1945-7111/aba44b https://iopscience.iop.org/article/10.1149/1945-7111/aba44b/meta

Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries, Davies, D. W., IOP SciNotes (Jul 2020) DOI:10.1088/2633-1357/ab9750 https://iopscience.iop.org/article/10.1088/2633-1357/ab9750/meta#acknowledgements (See also FutureCat)

Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., Applied Energy Materials (Aug 2020) DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also Degradation and NEXGENNA)

The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead, Nguyen, T., npj Computational Materials (Aug 2020) DOI:10.1038/s41524-020-00386-4 https://www.nature.com/articles/s41524-020-00386-4

Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements, Robinson, J., J. Electrochem. Soc. (Aug 2020) DOI:10.1149/1945-7111/abb174 https://iopscience.iop.org/article/10.1149/1945-7111/abb174/meta (See also LiSTAR)

Voltage Hysteresis Model for Silicon Electrodes for Lithium Ion Batteries, Including Multi-Step Phase Transformations, Crystallization and Amorphization, Jiang, Y., Journal of the Electrochemical Society (Sep 2020) DOI:10.1149/1945-7111/abbbba https://iopscience.iop.org/article/10.1149/1945-7111/abbbba/meta

An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Journal of the Electrochemical Society (Oct 2020) DOI:10.1149/1945-7111/abc4c1 https://iopscience.iop.org/article/10.1149/1945-7111/abc4c1/meta (See also Degradation)

4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of the Electrochemical Society (Oct 2020) DOI:10.1149/1945-7111/abbfd9 https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9/meta (See also LiSTAR, Imaging Dynamic Electrochemical Interfaces)

Electronic Structure Calculations in Electrolyte Solutions: Methods for Neutralization of Extended Charged Interfaces, Bhandari, A., Journal of Chemical Physics, Sep 2020, DOI:10.1063/5.0021210 https://aip.scitation.org/doi/abs/10.1063/5.0021210

A Suite of Reduced-Order Models of a Single-Layer Lithium-ion Pouch Cell, Marquis, S., Journal of the Electrochemical Society, Oct 2020, DOI:10.1149/1945-7111/abbce4 https://iopscience.iop.org/article/10.1149/1945-7111/abbce4/meta

The Cell Cooling Coefficient as a Design Tool to Optimise Thermal Management of Lithium-Ion Cells in Battery Packs, Hales, A., eTransportation, Nov 2020, DOI:10.1016/j.etran.2020.100089 https://www.sciencedirect.com/science/article/pii/S2590116820300473

Finding a better fit for lithium ion batteries: A simple, novel, load dependent, modified equivalent circuit model and parameterization method, Hua, X., Journal of Power Sources, Nov 2020, DOI:10.1016/j.jpowsour.2020.229117 https://www.sciencedirect.com/science/article/abs/pii/S0378775320314129

Voltage hysteresis during lithiation/delithiation of graphite associated with meta-stable carbon stackings, Mercer, M., Journal of Material Chemistry A, Nov 2020, DOI:10.1039/D0TA10403E https://pubs.rsc.org/en/content/articlehtml/2020/ta/d0ta10403e

Evidence for a Solid-Electrolyte Inductive Effect in the Superionic Conductor Li10Ge1–xSnxP2S12, Culver, S. P., Journal of the American Chemical Society, Dec 2020, DOI:10.1021/jacs.0c10735 https://pubs.acs.org/doi/abs/10.1021/jacs.0c10735

Thermodynamically consistent parameterization of electrochemical-potential derivatives within non-neutral, concentrated electrolytic fluids, Goyal, P., Electrochimica Acta, Dec 2020, DOI:10.1016/j.electacta.2020.137638 https://www.sciencedirect.com/science/article/abs/pii/S0013468620320314

The Application of Data-Driven Methods and Physics-Based Learning for Improving Battery Safety, Finegan, D. P., Joule, Dec 2020, DOI:10.1016/j.joule.2020.11.018 https://www.sciencedirect.com/science/article/abs/pii/S2542435120305626

Communication—Prediction of Thermal Issues for Larger Format 4680 Cylindrical Cells and Their Mitigation with Enhanced Current Collection, Tranter, T. G., Journal of The Electrochemical Society, Dec 2020, DOI:10.1149/1945-7111/abd44f https://iopscience.iop.org/article/10.1149/1945-7111/abd44f/meta

The prismatic surface cell cooling coefficient: A novel cell design optimisation tool & thermal parameterization method for a 3D discretised electro-thermal equivalent-circuit model, Hua, X., eTransportation, Jan 2021, DOI:0.1016/j.etran.2020.100099 https://www.sciencedirect.com/science/article/pii/S2590116820300576

A Shrinking-Core Model for the Degradation of High-Nickel Cathodes (NMC811) in Li-Ion Batteries: Passivation Layer Growth and Oxygen Evolution, Ghosh, A., Journal of The Electrochemical Society, Jan 2021, DOI:10.1149/1945-7111/abdc71 https://iopscience.iop.org/article/10.1149/1945-7111/abdc71/meta

Hybridizing Lead–Acid Batteries with Supercapacitors: A Methodology, Luo, X., Energies, Jan 2021, DOI:10.3390/en14020507 https://www.mdpi.com/1996-1073/14/2/507

Current Imbalance in Parallel Battery Strings Measured Using a Hall‐Effect Sensor Array, Luca, R., Energy Technology, Feb 2021, DOI:10.1002/ente.202001014 https://onlinelibrary.wiley.com/doi/full/10.1002/ente.202001014

Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management, Lander, L., Applied Energy, Mar 2021, DOI:10.1016/j.apenergy.2021.116737 https://www.sciencedirect.com/science/article/abs/pii/S0306261921002518

Solvent engineered synthesis of layered SnO for high-performance anodes, Jaskaniec, S., 2D Materials and Applications, Mar 2021, DOI:10.1038/s41699-021-00208-1 https://www.nature.com/articles/s41699-021-00208-1

Lithium-Ion Diagnostics: The First Quantitative In-Operando Technique for Diagnosing Lithium Ion Battery Degradation Modes under Load with Realistic Thermal Boundary Conditions, Prosser, R., Journal of the Electrochemical Society, Mar 2021, DOI:10.1149/1945-7111/abed28 https://iopscience.iop.org/article/10.1149/1945-7111/abed28/meta

Lithium Ion Battery Degradation: What you need to know, Edge, J. S., Physical Chemistry Chemical Physics, Mar 2021, DOI:10.1039/D1CP00359C https://pubs.rsc.org/en/content/articlehtml/2021/cp/d1cp00359c

How Machine Learning Will Revolutionize Electrochemical Sciences, Mistry, A., ACS Energy Letters, Mar 2021, DOI:10.1021/acsenergylett.1c00194 https://pubs.acs.org/doi/abs/10.1021/acsenergylett.1c00194

Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion, Kench, S., Nature Machine Intelligence, Apr 2021, DOI:10.1038/s42256-021-00322-1 https://www.nature.com/articles/s42256-021-00322-1

Guiding the Design of Heterogeneous Electrode Microstructures for Li‐Ion Batteries: Microscopic Imaging, Predictive Modeling, and Machine Learning, Xu, H., Advanced Energy Materials, Apr 2021, DOI:10.1002/aenm.202003908 https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202003908

Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries, Pang, M., Materials Today, Apr 2021, DOI:10.1016/j.mattod.2021.02.011 https://www.sciencedirect.com/science/article/abs/pii/S1369702121000572

Recent advances in acoustic diagnostics for electrochemical power systems, Majasan, J., Jphys Energy, Apr 2021, DOI:10.1088/2515-7655/abfb4a https://iopscience.iop.org/article/10.1088/2515-7655/abfb4a/meta

Intercalation Voltages for Spinel LixMn2O4 (0≤ x≤ 2) Cathode Materials: Calibration of Calculations with the ONETEP Linear-Scaling DFT Code, Ledwaba, R.S., Materials Today Communications, Apr 2021, DOI:10.1016/j.mtcomm.2021.102380 https://www.sciencedirect.com/science/article/abs/pii/S235249282100372X

Battery Degradation

In‐Situ Electrochemical SHINERS Investigation of SEI Composition on Carbon‐Coated Zn0.9Fe0.1O Anode for Lithium‐Ion Batteries, Cabo‐Fernandez, L., Batteries & Supercaps (Sep 2018)  DOI:10.1002/batt.201800063 https://onlinelibrary.wiley.com/doi/abs/10.1002/batt.201800063

Evolution of Electrochemical Cell Designs for In-Situ and Operando 3D Characterization, Shearing, P., Materials (Nov 2018) DOI:10.3390/ma11112157 https://www.ncbi.nlm.nih.gov/pubmed/30388856

4D Visualisation of In-situ Nano-compression of Li-ion Cathode Materials to Mimic Early Stage Calendering, Shearing, P., Daemi, S.R., Materials Horizons (Dec 2018) DOI:10.1039/C8MH01533C https://pubs.rsc.org/en/content/articlelanding/2019/mh/c8mh01533c#!divAbstract

Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2(NMC811) Cathodes during Electrochemical Cycling, Märker, K., Chemistry of Materials (Mar 2019) DOI:10.1021/acs.chemmater.9b00140 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00140

Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells, Finegan, D. P., Journal of Power Sources (Mar 2019) DOI:10.1016/j.jpowsour.2019.01.077 https://doi.org/10.1016/j.jpowsour.2019.01.077

Temperature Considerations for Li-ion Batteries Comparing Inductive Charging with Mains Device Charging Modes for Portable Electronic Devices, Loveridge, M., ACS Energy Letters (Apr 2019) DOI:10.1021/acsenergylett.9b00663 https://www.researchgate.net/publication/332475349_Temperature_Considerations_for_Charging_Li-Ion_Batteries_Inductive_versus_Mains_Charging_Modes_for_Portable_Electronic_Devices

Spatially Resolving Lithiation in Silicon–Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography, Finegan, D. P., Nano Letters (May 2019) DOI:10.1021/acs.nanolett.9b00955 https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b00955

Porous Metal-Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-ion Batteries, Loveridge, M., Chemistry of Materials (May 2019) DOI:10.1021/acs.chemmater.9b00933     https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00933

Concentrated Electrolytes for Enhanced Stability of Al-Alloy Negative Electrodes in Li-Ion Batteries, Chan, A. K., J. Electrochem. Soc. (Jun 2019) DOI:10.1149/2.0581910jes https://iopscience.iop.org/article/10.1149/2.0581910jes/meta

Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response, Wang, B., J. of Physical Chemistry C (Aug 2019) DOI:10.1021/acs.jpcc.9b04292 https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b04292

Virtual unrolling of spirally-wound lithium-ion cells for correlative degradation studies and predictive fault detection, Kok, M. D. R., Sustainable Energy and Fuels (Aug 2019) DOI:10.1039/C9SE00500E https://pubs.rsc.org/en/content/articlehtml/2019/se/c9se00500e

Kerr gated Raman spectroscopy of LiPF6 salt and LiPF6-based organic carbonate electrolyte for Li-ion batteries, Cabo-Fernandez, L., Physical Chemistry Chemical Physics (Sep 2019) DOI:10.1039/C9CP02430A https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp02430a#!divAbstract

Representative resolution analysis for X-ray CT: A Solid oxide fuel cell case study, Heenan, T. M. M., Chemical Engineering Science: X (Oct 2019) DOI:10.1016/j.cesx.2019.100043 https://www.sciencedirect.com/science/article/pii/S2590140019300504

Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes, Zou, J., Electrochimica Acta (Nov 2019) DOI:10.1016/j.electacta.2019.135284 https://www.sciencedirect.com/science/article/pii/S0013468619321565

In situ electron paramagnetic resonance spectroelectrochemical study of graphene-based supercapacitors: Comparison between chemically reduced graphene oxide and nitrogen-doped reduced graphene oxide, Wang, B., Carbon (Dec 2019) DOI:10.1016/j.carbon.2019.12.045 https://www.sciencedirect.com/science/article/abs/pii/S0008622319312801

Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium-ion electrodes, Finegan, D. P., Nature Comms (Jan 2020) DOI:10.1038/s41467-020-14467-x  https://www.nature.com/articles/s41467-020-14467-x#Ack1

Theoretical transmissions for X-ray computed tomography studies of lithium-ion battery cathodes, Heenan, T. M. M., Materials & Design (Feb 2020) DOI:10.1016/j.matdes.2020.108585 https://www.sciencedirect.com/science/article/pii/S0264127520301192#s0120

Thermal Runaway of a Li-Ion Battery Studied by Combined ARC and Multi-Length Scale X-ray CT, Patel, D., J.Electrochem. Soc (Apr 2020) DOI:10.1149/1945-7111/ab7fb6 https://iopscience.iop.org/article/10.1149/1945-7111/ab7fb6/meta

Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning, Zhang, Y., Nature Comms (Apr 2020) DOI:10.1038/s41467-020-15235-7 https://www.nature.com/articles/s41467-020-15235-7#Ack1

Rapid Preparation of Geometrically Optimal Battery Electrode Samples for Nano Scale X-ray Characterisation, Tan, C., Journal of The Electrochemical Society (Apr 2020) DOI:10.1149/1945-7111/ab80cd https://iopscience.iop.org/article/10.1149/1945-7111/ab80cd

3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling, Lu, X., Nature Comms (Apr 2020) DOI:10.1038/s41467-020-15811-x https://www.nature.com/articles/s41467-020-15811-x#Ack1 (See also Multi-Scale Modelling)

Resolving Li‐Ion Battery Electrode Particles Using Rapid Lab‐Based X‐Ray Nano‐Computed Tomography for High‐Throughput Quantification, Heenan, T. M. M., Advanced Science (Apr 2020) DOI:10.1002/advs.202000362 https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202000362

Quantitative Relationships Between Pore Tortuosity, Pore Topology, and Solid Particle Morphology Using a Novel Discrete Particle Size Algorithm, Usseglio-Viretta, F., Journal of The Electrochemical Society (Jun 2020) DOI:10.1149/1945-7111/ab913b https://iopscience.iop.org/article/10.1149/1945-7111/ab913b/meta

Correlative acoustic time-of-flight spectroscopy and X-ray imaging to investigate gas-induced delamination in lithium-ion pouch cells during thermal runaway, Pham, M. T. M., Journal of Power Sources (Jun 2020) DOI:10.1016/j.jpowsour.2020.228039 https://www.sciencedirect.com/science/article/abs/pii/S0378775320303426

Highly sensitive operando pressure measurements of Li-ion battery materials with a simply modified Swagelok cell, Ryall, N., Journal of The Electrochemical Society (Jun 2020) DOI:10.1149/1945-7111/ab9e81 https://iopscience.iop.org/article/10.1149/1945-7111/ab9e81/meta

Exploring cycling induced crystallographic change in NMC with X-ray diffraction computed tomography, Daemi, S.R., Physical Chemistry Chemical Physics (Jun 2020) DOI:10.1039/D0CP01851A https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp01851a

Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties, Zhang, Z., ACS Appl. Mater. Interfaces (Jul 2020) DOI:10.1021/acsami.0c11190 https://pubs.acs.org/doi/abs/10.1021/acsami.0c11190 (See also LiSTAR)

Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Data in Brief (Jul 2020) DOI:10.1016/j.dib.2020.106033 https://www.sciencedirect.com/science/article/pii/S2352340920309276#ack0001 (See also Multi-Scale Modelling)

Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., Applied Energy Materials (Aug 2020) DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also Degradation and NEXGENNA)

High Power Energy Storage from Carbon Electrodes using Highly Acidic Electrolytes, Cao, J., Journal of Physical Chemistry C (Aug 2020) DOI:10.1021/acs.jpcc.0c04930 https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c04930#

Operando NMR of NMC811/graphite lithium-ion batteries: Structure, dynamics, and lithium metal deposition, Märker, K., J., Journal of the American Chemical Society, (Sep 2020) DOI:10.1021/jacs.0c06727 https://pubs.acs.org/doi/abs/10.1021/jacs.0c06727

The Detection of Monoclinic Zirconia and Non-Uniform 3D Crystallographic Strain in a Re-Oxidized Ni-YSZ Solid Oxide Fuel Cell Anode, Heenan, T. M. M., Crystals, (Oct 2020) DOI:10.3390/cryst10100941 https://www.mdpi.com/2073-4352/10/10/941

Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale (Oct 2020) DOI:10.1039/D0NR04589F https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also ReLiB, Imaging Dynamic Electrochemical Interfaces)

An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Journal of the Electrochemical Society (Oct 2020) DOI:10.1149/1945-7111/abc4c1 https://iopscience.iop.org/article/10.1149/1945-7111/abc4c1/meta (See also Multi-Scale Modelling)

Synthesis of Layered Silicon-Graphene Hetero-structures by Wet Jet Milling for High Capacity Anodes in Li-ion Batteries, Malik, R., 2D Materials, Oct 2020, DOI:10.1088/2053-1583/aba5ca https://iopscience.iop.org/article/10.1088/2053-1583/aba5ca/meta

An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., J. Electrochem. Soc., Oct 2020, DOI:10.1149/1945-7111/abc4c1 https://iopscience.iop.org/article/10.1149/1945-7111/abc4c1/meta

Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-Ion Batteries, Heenan, T. M. M., Advanced Energy Materials, Nov 2020, DOI:10.1002/aenm.202002655 https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202002655 (See also Multi-scale Modelling)

The effects of ambient storage conditions on the structural and electrochemical properties of NMC-811 cathodes for Li-ion batteries, Busa, C., Electrochimica Acta, Nov 2020, DOI:10.1016/j.electacta.2020.137358 https://www.sciencedirect.com/science/article/pii/S0013468620317515

Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-rich Li-ion Batteries, Dose, W., Cell Report Physical Science, Nov 2020, DOI:10.1016/j.xcrp.2020.100253 https://www.sciencedirect.com/science/article/pii/S2666386420302757

Microstructural Evolution of Battery Electrodes During Calendering, Lu, X., Joule, Nov 2020, DOI:10.1016/j.joule.2020.10.010 https://www.sciencedirect.com/science/article/abs/pii/S2542435120304992

Self-activated cathode substrates in rechargeable zinc–air batteries, Guo, J., Energy Storage Materials, Nov 2020, DOI:10.1016/j.ensm.2020.11.036 https://www.sciencedirect.com/science/article/abs/pii/S2405829720304487

Using In-Situ Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries Characterization: A Review on Recent Developments, Llewellyn, A.V., Condensed Matter, Nov 2020, DOI:10.3390/condmat5040075 https://www.mdpi.com/2410-3896/5/4/75 (See also LiSTAR, Characterisation)

Sample Dependence of Magnetism in the Next Generation Cathode Material LiNi0. 8Mn0.1Co0.1O2, Mukherjee, P., Inorganic Chemistry, Dec 2020, DOI:10.1021/acs.inorgchem.0c02899 https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c02899

Operando Bragg Coherent Diffraction Imaging of LiNi0.8Mn0.1Co0.1O2 Primary Particles within Commercially Printed NMC811 Electrode Sheets, Estandarte, A. K. C., ACS Nano, Dec 2020, DOI:10.1021/acsnano.0c08575 https://pubs.acs.org/doi/abs/10.1021/acsnano.0c08575 (see also Characterisation project, Liverpool)

Phase behaviour during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries, Xu, C., Advanced Energy Materials, Dec 2020, DOI:10.1002/aenm.202003404 https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202003404

Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities, Liu, Y., Advanced Functional Meterials, Jan 2021, DOI:10.1002/adfm.202010445 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202010445

Prevention of lithium-ion battery thermal runaway using polymer-substrate current collectors, Pham, M. T. M., Cell Report Physical Science, Mar 2021, DOI:10.1016/j.xcrp.2021.100360 https://www.sciencedirect.com/science/article/pii/S266638642100045X

Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization, Dong, H., Advanced Materials, Apr 2021, DOI:10.1002/adma.202007548 https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202007548

ReLiB - Recycling and Reuse of Lithium-ion Batteries

Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point, Raugei, M., Journal of Cleaner Production (Nov 2018) DOI:10.1016/j.jclepro.2018.08.107 https://doi.org/10.1016/j.jclepro.2018.08.107

Net Energy Analysis must not compare apples and oranges, Raugei, M., Nature Energy (Jan 2019) DOI:10.1038/s41560-019-0327-0 https://doi.org/10.1038/s41560-019-0327-0

Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles, Raugei, M., Journal of Cleaner Production (Mar 2019) DOI:10.1016/j.jclepro.2018.12.237 https://www.sciencedirect.com/science/article/pii/S0959652618339593

Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies, Rajaeifar, M. A., Renewable and Sustainable Energy Reviews (May 2019) DOI:10.1016/j.rser.2019.05.004 https://www.sciencedirect.com/science/article/pii/S1364032119303107?via%3Dihub

Production of biogenic nanoparticles for the reduction of 4-nitrophenol and oxidative laccase-like reactions, Capeness, M. J., Frontiers in  Microbiology (May 2019) DOI:10.3389/fmicb.2019.00997 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520526/

Energy Return On Investment – setting the record straight, Raugei, M., Joule (Aug 2019) DOI:10.1016/j.joule.2019.07.020 https://www.sciencedirect.com/science/article/abs/pii/S2542435119303642

Our Waste, Our resources; A Strategy for England' - Switching to a circular economy through the use of extended producer responsibility, Dawson, L., Environmental Law Review (Sep 2019) DOI:10.1177/1461452919851943 https://journals.sagepub.com/doi/10.1177/1461452919851943

The role of electric vehicles in near-term mitigation pathways, Hill, G., Applied Energy, Oct 2019, DOI:10.1016/j.apenergy.2019.04.107 https://www.sciencedirect.com/science/article/pii/S0306261919307834

Recycling Lithium-Ion Batteries From Electric Vehicles, Harper, G., Nature (Nov 2019) DOI:10.1038/s41586-019-1682-5 https://www.nature.com/articles/s41586-019-1682-5

Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents, Al-Murshedi, A. Y. M., The International Journal of Surface Engineering and Coatings (Nov 2019) DOI:10.1080/00202967.2019.1671062 https://www.tandfonline.com/doi/abs/10.1080/00202967.2019.1671062

What are the energy and environmental impacts of adding battery storage to photovoltaics?, Raugei, M., Energy Technology (Jan 2020) DOI:10.1002/ente.201901146 https://onlinelibrary.wiley.com/doi/abs/10.1002/ente.201901146

Beyond the EVent horizon: Technological Obsolescence in UK Battery Electric Vehicles from 2011 – 2025, Skeete, J. P., Energy Research & Social Science (May 2020) DOI:10.1016/j.erss.2020.101581 https://www.sciencedirect.com/science/article/pii/S2214629620301572

Disassembly of Li Ion Cells—Characterization and Safety Considerations of a Recycling Scheme, Marshall, J., Metals (Jun 2020) DOI:10.3390/met10060773 https://www.mdpi.com/2075-4701/10/6/773

The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., J. Chem. Educ. (Jun 2020) DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282 (See also CATMAT and Nextrode)

Experimental Visualization of Commercial Lithium-Ion Battery Cathodes: Distinguishing Between the Microstructure Components Using Atomic Force Microscopy, Terreblanche, J. S., J. Phys. Chem. C (Jun 2020) DOI:10.1021/acs.jpcc.0c02713 https://pubs.acs.org/doi/10.1021/acs.jpcc.0c02713?ref=pdf

A circular economy for electric vehicle batteries: driving the change, Ahuja, J., Journal of Property, Planning and Environmental Law (Aug 2020) DOI:10.1108/JPPEL-02-2020-0011 https://www.emerald.com/insight/content/doi/10.1108/JPPEL-02-2020-0011/full/html

Circular economy strategies for electric vehicle batteries reduce reliance on raw materials, Baars, J., Nature Sustainability (Sep 2020) DOI:10.1038/s41893-020-00607-0 https://www.nature.com/articles/s41893-020-00607-0

A rapid neural network–based state of health estimation scheme for screening of end of life electric vehicle batteries, Rastegarpanah, A., Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering (Sep 2020) DOI:10.1177/0959651820953254 https://journals.sagepub.com/doi/full/10.1177/0959651820953254

A review of physical processes used in the safe recycling of lithium-ion batteries, Sommerville et al., Sustainable Materials and Technologies, 25, e00197 (Sep 2020) DOI:10.1016/j.susmat.2020.e00197 https://www.sciencedirect.com/science/article/abs/pii/S2214993719303501

The EV revolution: The road ahead for critical raw materials demand, Jones, B., Applied Energy (Oct 2020) DOI:10.1016/j.apenergy.2020.115072 https://www.sciencedirect.com/science/article/pii/S0306261920305845

A qualitative assessment of lithium ion battery recycling processes, Sommerville, R., Resources, Conservation and Recycling (Oct 2020) DOI:10.1016/j.resconrec.2020.105219 https://www.sciencedirect.com/science/article/abs/pii/S0921344920305358

Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale (Oct 2020) DOI:10.1039/D0NR04589F https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also Degradation, Imaging Dynamic Electrochemical Interfaces)

A circular economy for electric vehicle batteries: driving the change, Ahuja, J., Journal of Property, Planning and Environmental Law, Aug 2020, DOI:10.1108/JPPEL-02-2020-0011 https://www.emerald.com/insight/content/doi/10.1108/JPPEL-02-2020-0011/full/html

Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents, Pateli, I. M., Green Chemistry, Nov 2020, DOI:10.1039/D0GC03491F https://pubs.rsc.org/en/content/articlelanding/2020/gc/d0gc03491f/unauth#!divAbstract

Does Energy Storage Provide a Profitable Second Life for EV batteries?, Wu, W., Energy Economics, Nov 2020, DOI:10.1016/j.eneco.2020.105010 https://www.sciencedirect.com/science/article/pii/S0140988320303509

A review of current collectors for lithium-ion batteries, Zhu, P., Journal of Power Sources, Dec 2020, DOI:10.1016/j.jpowsour.2020.229321 https://www.sciencedirect.com/science/article/abs/pii/S0378775320316098

Methodologies for Large-Size Pouch Lithium-Ion Batteries End-of-Life Gateway Detection in the Second-Life Application, Attidekou, P. S., Journal of The Electrochemical Society, Dec 2020, DOI:10.1149/1945-7111/abd1f1 https://iopscience.iop.org/article/10.1149/1945-7111/abd1f1/meta

Thermal and mechanical abuse of electric vehicle pouch cell modules, Christensen, P., Applied Thermal Engineering, Jan 2021, DOI:10.1016/j.applthermaleng.2021.116623 https://www.sciencedirect.com/science/article/abs/pii/S135943112100079X

A Unified Method for the Recovery of Metals from Chalcogenides, Bevan, F., ACS Sustainable Chemistry Engineering, Feb 2021, DOI:10.1021/acssuschemeng.0c09120 https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.0c09120

A Training Free Technique for 3D Object Recognition using the Concept of Vibration, Energy and Frequency, Joshi, P., Computers & Graphics, Feb 2021, DOI:10.1016/j.cag.2021.01.014 https://www.sciencedirect.com/science/article/abs/pii/S0097849321000145

Towards robotizing the processes of testing lithium-ion batteries, Rastegarpanah, A., Proceedings of the IMechE, Part 1: Journal of Systems and Control Engineering, Mar 2021, DOI:10.1177/0959651821998599 https://journals.sagepub.com/doi/full/10.1177/0959651821998599

Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic Environments, Reza Azizi, M., Robotics, Mar 2021, DOI:10.3390/robotics10010048 https://www.mdpi.com/2218-6581/10/1/48

Nextrode – Electrode Manufacturing

The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., J. Chem. Educ. (Jun 2020) DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282 (See also ReLiB and CATMAT)

Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates, Kazakli, M., Journal of Membrane Science (Aug 2020) DOI:10.1016/j.memsci.2020.118640 https://www.sciencedirect.com/science/article/pii/S0376738820312163Multi-Layered Composite Electrodes of High Power Li4Ti5O12 and High Capacity SnO2 for

Smart Lithium Ion Storage, Ho Lee, S., Energy Storage Materials, Feb 2021, DOI:10.1016/j.ensm.2021.02.010 https://www.sciencedirect.com/science/article/abs/pii/S2405829721000532 

CATMAT – Next Generation Lithium-ion Cathode Materials

The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., J. Chem. Educ. (Jun 2020) DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282

First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk House, R.A., Nature Energy (Sep 2020) DOI:10.1038/s41560-020-00697-2 https://www.nature.com/articles/s41560-020-00697-2

Redox Chemistry and the Role of Trapped Molecular O2 in Li-Rich Disordered Rocksalt Oxyfluoride Cathodes, Sharpe, R., Journal of the American Chemical Society, Dec 2020, DOI:10.1021/jacs.0c10270 https://pubs.acs.org/doi/abs/10.1021/jacs.0c10270

First-cycle voltage hysteresis in Li-rich 3 d cathodes associated with molecular O 2 trapped in the bulk, House, R. A., Nature Energy, Sep 2020, DOI:10.1038/s41560-020-00697-2 https://www.nature.com/articles/s41560-020-00697-2

FutureCat – Next Generation Lithium-ion Cathode Materials

Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials, McClelland, I., Annual Review of Materials Research (May 2020) DOI:10.1146/annurev-matsci-110519-110507 https://www.annualreviews.org/doi/full/10.1146/annurev-matsci-110519-110507#_i40

Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries, Davies, D.W., IOPSciNotes, (Jul 2020), 1 024805 https://iopscience.iop.org/article/10.1088/2633-1357/ab9750

Revisiting metal fluorides as lithium-ion battery cathodes, Hua, X., Nature Materials, Jan 2021, DOI:10.1038/s41563-020-00893-1 https://www.nature.com/articles/s41563-020-00893-1

Non-equilibrium metal oxides via reconversion chemistry in lithium-ion batteries, Hua, X., Nature Communications, Jan 2021, DOI:10.1038/s41467-020-20736-6 https://www.nature.com/articles/s41467-020-20736-6

Beyond Lithium-ion

SOLBAT: Solid-state Metal Anode Batteries

Selective and Facile Synthesis of Sodium Sulfide and Sodium Disulfide Polymorphs, El-Shinawi, H., Inorganic Chemistry (Jun 2018) DOI:10.1021/acs.inorgchem.8b00776 https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b00776

Na1.5La1.5TeO6: Na+ conduction in a novel Na-rich double perovskite, Amores, M. , Chemical Communications (Aug 2018) DOI:10.1039/C8CC03367F https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc03367f#!divAbstract

Lithium Transport in Li4.4M0.4M′0.6S4 (M = Al3+, Ga3+, and M′ = Ge4+, Sn4+): Combined Crystallographic, Conductivity, Solid State NMR, and Computational Studies, Leube, B. T. , Chemistry of Materials (Sep 2018) DOI:10.1021/acs.chemmater.8b03175 https://pubs.acs.org/doi/10.1021/acs.chemmater.8b03175

Low-Dose Aberration-Free Imaging of Li-Rich Cathode Materials at Various States of Charge Using Electron Ptychography Juan, Lozano, G., Nano Letters (Sep 2018 DOI:10.1021/acs.nanolett.8b02718 https://pubs.acs.org/doi/10.1021/acs.nanolett.8b02718

Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm−1 and its primary applications in symmetric battery cells, Ma, Qianli John T. S. Irvine: Journal of Materials Chemistry A (Feb 2019) DOI:10.1039/C9TA00048H https://pubs.rsc.org/en/content/articlelanding/2019/TA/C9TA00048H#!divAbstract

7Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries, Marbella, L. E. , Chemistry of Materials (Apr 2019) DOI:10.1021/acs.chemmater.8b04875 https://pubs.acs.org/doi/full/10.1021/acs.chemmater.8b04875

What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?, House, R. A., Chemistry of Materials (Apr 2019) DOI:10.1021/acs.chemmater.9b00227 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00227

Nature of the “Z”-phase in Layered Na-ion Battery Cathodes, Somerville, J. W., Energy & Environmental Sciences (May 2019) DOI:10.1039/C8EE02991A https://pubs.rsc.org/en/content/articlelanding/2019/EE/C8EE02991A#!divAbstract

Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries, Cowan, A., Annual Review of Analytical Chemistry (Jun 2019) DOI:10.1146/annurev-anchem-061318-115303 https://www.annualreviews.org/doi/abs/10.1146/annurev-anchem-061318-115303

Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells, Kasemchainan, J., Nature Materials (Jul 2019) DOI:10.1038/s41563-019-0438-9 https://www.nature.com/articles/s41563-019-0438-9

Co-spray printing of LiFePO4 and PEO-Li1.5Al0.5Ge1.5(PO4)3 hybrid electrodes for all-solid-state Li-ion battery applications, Bu, J., Journal of Materials Chemistry A (Aug 2019) DOI:10.1039/C9TA03824H https://pubs.rsc.org/en/content/articlelanding/2019/TA/C9TA03824H#!divAbstract

Dental Resin Monomer Enables Unique NbO2/Carbon Lithium‐Ion Battery Negative Electrode with Exceptional Performance, Ji, Q., Advanced Functional Materials (Aug 2019) DOI:10.1002/adfm.201904961 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201904961

Dendrite nucleation in lithium-conductive ceramics, Li, G., Physical Chemistry Chemical Physics (Sep 2019) DOI:10.1039/C9CP03884A https://pubs.rsc.org/en/content/articlehtml/2019/cp/c9cp03884a

Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes, Naylor, A. J., J. Mater. Chem. A (Sep 2019) DOI:10.1039/C9TA09019C https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta09019c

Computationally Guided Discovery of the Sulfide Li3AlS3 in the Li–Al–S Phase Field: Structure and Lithium Conductivity, Gamon, Jacinthe, Chemistry of Materials (Oct 2019) DOI:10.1021/acs.chemmater.9b03230 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b03230

A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li–S batteries, El-Shinawi, H., Nanoscale (Oct 2019) DOI:10.1039/C9NR06239D https://pubs.rsc.org/lv/content/articlehtml/2019/nr/c9nr06239d

A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals, Al-Masri, D., J. Mater. Chem. A (Oct 2019) DOI:10.1039/C9TA11175A https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta11175a

The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte, Liu, J., Joule (Oct 2019) DOI:10.1016/j.joule.2019.10.001 https://www.sciencedirect.com/science/article/pii/S2542435119304830

Is Nitrogen Present in Li3N·P2S5 Solid Electrolytes Produced by Ball Milling?, Hartley, G. O., Chemistry of Materials (Nov 2019) DOI:10.1021/acs.chemmater.9b01853 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b01853

Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes, House, R. A., Nature (Dec 2019) DOI:10.1038/s41586-019-1854-3 https://www.nature.com/articles/s41586-019-1854-3

Sodium/Na β″ Alumina Interface: Effect of Pressure on Voids, Jolly, D. S., ACS Appl. Mater. Interfaces (Dec 2019) DOI:10.1021/acsami.9b17786 https://pubs.acs.org/doi/abs/10.1021/acsami.9b17786

Mechanics of the Ideal Double-Layer Capacitor, Monroe, C. W., J. Electrochem. Soc. (Feb 2020) DOI:10.1149/1945-7111/ab6b04 https://iopscience.iop.org/article/10.1149/1945-7111/ab6b04 (See also Multi-Scale Modelling)

Multiscale Lithium-Battery Modeling from Materials to Cells, Li, G., Annual Review of Chemical and Biomolecular Engineering (Mar 2020) DOI:10.1146/annurev-chembioeng-012120-083016 https://www.annualreviews.org/doi/pdf/10.1146/annurev-chembioeng-012120-083016 (See also Multi-Scale Modelling)

Dendrites as climbing dislocations in ceramic electrolytes: Initiation of growth, Shishvan, S. S., Journal of Power Sources (Mar 2020) DOI:10.1016/j.jpowsour.2020.227989 https://www.sciencedirect.com/science/article/abs/pii/S0378775320302925

Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization, Gregory, Georgina L., Chemical Science (May 2020) DOI:10.1039/D0SC00463D https://pubs.rsc.org/en/content/articlelanding/2020/sc/d0sc00463d#!divAbstract

Fabrication of Li1+ xAlxGe2-x (PO4) 3 thin films by sputtering for solid electrolytes, Mousavi, T., Solid State Ionics (Jul 2020) DOI:10.1016/j.ssi.2020.115397 https://www.sciencedirect.com/science/article/abs/pii/S0167273820304513

2020 roadmap on solid-state batteries, Pasta, M., Journal of Physics: Energy (Aug 2020) DOI:10.1088/2515-7655/ab95f4 https://iopscience.iop.org/article/10.1088/2515-7655/ab95f4/meta

Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with Tunable Pore size and, Zuo, X., Applied Materials and Interfaces (Sep 2020) DOI:10.1021/acsami.0c12747 https://pubs.acs.org/doi/abs/10.1021/acsami.0c12747

Imaging Sodium Dendrite Growth in All‐Solid‐State Sodium Batteries using 23Na T2‐weighted MRI, Rees, G. J., Angewandte, Chemie International Edition (Oct 2020) DOI:10.1002/anie.202013066 https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202013066

Computationally Guided Discovery of the Sulfide Li3AlS3 in the Li–Al–S Phase Field: Structure and Lithium Conductivity, Gamon, J., Chemical Materials (Oct 2020) DOI:10.1021/acs.chemmater.9b03230 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b03230

Electrochemo-Mechanical Properties of Red Phosphorus Anodes in Lithium, Sodium, and Potassium Ion Batteries, Capone, I., Matter (Oct 2020) DOI:10.1016/j.matt.2020.09.017 https://www.sciencedirect.com/science/article/pii/S2590238520305154 

3D Imaging of Lithium Protrusions in Solid‐State Lithium Batteries using X‐Ray Computed Tomography, Hao, S., Advanced Functional Materials, Dec 2020, DOI:10.1002/adfm.202007564 https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007564

Li1.5La1.5MO6 (M = W 6+, Te 6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries, Amores, M., Nature Communications, Dec 2020, DOI:10.1038/s41467-020-19815-5 https://www.nature.com/articles/s41467-020-19815-5

Tracking Lithium Penetration in Solid Electrolyte in 3D by In-situ Synchrotron X-ray Computed Tomography, Hao, S., Nano Energy, Jan 2021, DOI:10.1016/j.nanoen.2021.105744 https://www.sciencedirect.com/science/article/abs/pii/S2211285521000033

The initiation of void growth during stripping of Li electrodes in solid electrolyte cells, Shishvan, S. S., Journal of Power Sources, Jan 2021, DOI:10.1016/j.jpowsour.2020.229437 https://www.sciencedirect.com/science/article/abs/pii/S0378775320317201

In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation, McClelland, I., Applied Energy Materials, Jan 2021, DOI:10.1021/acsaem.0c02722 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c02722 (see also FutureCat)

Li6SiO4Cl2: A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking, Morscher, A., Chemistry of Materials, Mar 2021, DOI:10.1021/acs.chemmater.1c00157 https://pubs.acs.org/doi/full/10.1021/acs.chemmater.1c00157

Development of sputtered nitrogen-doped Li1+xAlxGe2-x(PO4)3 thin films for solid state batteries, Mousavi, T., Solid State Ionics, Apr 2021, DOI:10.1016/j.ssi.2021.115613 https://www.sciencedirect.com/science/article/abs/pii/S0167273821000667

An assessment of a mechanism for void growth in Li anodes, Roy, U., Extreme Mechanics Letters, Apr 2021, DOI:10.1016/j.eml.2021.101307 https://www.sciencedirect.com/science/article/abs/pii/S235243162100078X

NEXGENNA – Sodium-ion Batteries

Advances in Organic Anode Materials for Na‐/K‐Ion Rechargeable Batteries, Desai, A. V., ChemSusChem (Jul 2020) DOI:10.1002/cssc.202001334 https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.202001334

Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., Applied Energy Materials (Aug 2020) DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also Multi-Scale Modelling and Degradation)

Surface engineering strategy using urea to improve the rate performance of Na2Ti3O7 in Na‐ion batteries, Costa Sara I. R., Chemistry A European Journal (Aug 2020) DOI:10.1002/chem.202003129 https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.202003129

Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0. 67Mg0. 2Mn0. 8O2, Kim, E. Journal of Applied Energy Materials (Sep 2020) DOI:10.1021/acsaem.0c01352 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c01352

Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies, Kim, E. J., Journal of Power Sources (Oct 2020) DOI:10.1016/j.jpowsour.2020.229010 https://www.sciencedirect.com/science/article/pii/S0378775320313070

Extending the Performance Limit of Anodes: Insights from Diffusion Kinetics of Alloying Anodes, Choi, Y., Advanced Energy Materials, Dec 2020, DOI:10.1002/aenm.202003078 https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202003078

LiSTAR – Lithium-sulfur Batteries

A Highly Sensitive Electrochemical Sensor of Polysulfides in Polymer Lithium-Sulfur Batteries, Meddings, N., Journal of The Electrochemical Society (May 2020) DOI:10.1149/1945-7111/ab8ce9 https://iopscience.iop.org/article/10.1149/1945-7111/ab8ce9/meta

Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties, Zhang, Z., ACS Appl. Mater. Interfaces (Jul 2020) DOI:10.1021/acsami.0c11190 https://pubs.acs.org/doi/abs/10.1021/acsami.0c11190

Toward Practical Demonstration of High-Energy-Density Batteries, Shearing, P. R., Joule (Jul 2020) DOI:10.1016/j.joule.2020.06.019 https://www.sciencedirect.com/science/article/abs/pii/S2542435120302828

The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery, Di Lecce, D., J. of Power Sources (Jul 2020) DOI:10.1016/j.jpowsour.2020.228424 https://www.sciencedirect.com/science/article/abs/pii/S037877532030728X

Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements, Robinson, J., J. Electrochem. Soc. (Aug 2020) DOI:10.1149/1945-7111/abb174 https://iopscience.iop.org/article/10.1149/1945-7111/abb174/meta (See also Multi-scale Modelling)

4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of the Electrochemical Society (Oct 2020) DOI:10.1149/1945-7111/abbfd9 https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9/meta (See also Imaging Dynamic Electrochemical Interfaces, Multi-Scale Modelling)

Molecular modeling of electrolyte and polysulfide ions for lithium-sulfur batteries, Babar, S., Ionics, Dec 2020, DOI:10.1007/s11581-020-03860-7 https://link.springer.com/article/10.1007/s11581-020-03860-7

2021 Roadmap on Lithium Sulfur Batteries, Robinson, J., Jphys Energy, Jan 2021, DOI:10.1088/2515-7655/abdb9a https://iopscience.iop.org/article/10.1088/2515-7655/abdb9a/meta

Evaluation and Realization of Safer Mg-S Battery: the Decisive Role of the Electrolyte, Sheng, L., Nano Energy, Jan 2021, DOI:10.1016/j.nanoen.2021.105832 https://www.sciencedirect.com/science/article/abs/pii/S2211285521000902

A Multiscale X‐Ray Tomography Study of the Cycled‐Induced Degradation in Magnesium–Sulfur Batteries, Du, W., Small Methods, Mar 2021, DOI:10.1002/smtd.202001193 https://onlinelibrary.wiley.com/doi/full/10.1002/smtd.202001193

Battery Characterisation

Imaging Dynamic Electrochemical Interfaces

Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications, Bentley, C. L., Analytical Chemistry (Jun 2020) DOI:10.1021/acs.analchem.0c01540 https://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c01540

Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy, Shkirskiy, V., Analytical Chemistry (Aug 2020) DOI:10.1021/acs.analchem.0c02358 https://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c02358

Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale (Oct 2020) DOI:10.1039/D0NR04589F https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also ReLiB, Degradation)

4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of the Electrochemical Society (Oct 2020) DOI:10.1149/1945-7111/abbfd9 https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9/meta (See also LiSTAR, Multi-Scale Modelling)

4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes, Ziesche, R. F., Journal of Imaging, Dec 2020, DOI:10.3390/jimaging6120136 https://www.mdpi.com/2313-433X/6/12/136 (See also Nextrode)

Controlling Radiolysis Chemistry on the Nanoscale in Liquid Cell Scanning Transmission Electron Microscopy, Lee, J., Physical Chemistry Chemical Physics, Mar 2021, DOI:10.1039/D0CP06369J https://pubs.rsc.org/en/content/articlehtml/2021/cp/d0cp06369j (see also ReLiB)

Probing Buried Interfaces in Working Batteries

The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance, Brugge R.H., J. Mater. Chem. A (Jul 2020) 8, 14265-14276 https://pubs.rsc.org/en/content/articlelanding/2020/ta/d0ta04974c#!divAbstract

 

NEWS FEEDS / SOCIAL MEDIA

Back to Top