Research from the Faraday Institution’s programme has led to highly cited publications, a suite of patents, and a number of commercial spin-outs.
As of October 2021 the Faraday Institution has contributed over 250 publications to the scientific literature. Almost half of the published research coming out of the Faraday Institution has international collaboration spanning 176 institutions and five continents.
Faraday Institution publications are of measurably high quality and are bringing up the UK average Field-Weighted Citation Impact (FWCI) in the research domains in which the Faraday Institution operates (chemistry, materials science, energy, physics, chemical engineering, engineering, environmental science). Worldwide, research in 2021 carries a FWCI of 1.00. Faraday Institution research is on target to be ahead of this with a FWCI of 2.28. Across the wider UK in this research domain, the FWCI is 1.56.
Lithium Ion
Battery Degradation
In‐Situ Electrochemical SHINERS Investigation of SEI Composition on Carbon‐Coated Zn0.9Fe0.1O Anode for Lithium‐Ion Batteries, Cabo‐Fernandez, L., Batteries & Supercaps, (Sep 2018), DOI:10.1002/batt.201800063 https://onlinelibrary.wiley.com/doi/abs/10.1002/batt.201800063
Evolution of Electrochemical Cell Designs for In-Situ and Operando 3D Characterization, Tan C., Materials, (Nov 2018), DOI:10.3390/ma11112157 https://www.ncbi.nlm.nih.gov/pubmed/30388856
4D Visualisation of In-situ Nano-compression of Li-ion Cathode Materials to Mimic Early Stage Calendering, Daemi, S.R., Materials Horizons, (Dec 2018), DOI:10.1039/C8MH01533C https://pubs.rsc.org/en/content/articlelanding/2019/MH/C8MH01533C (See also Multi-scale Modelling)
Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2(NMC811) Cathodes during Electrochemical Cycling, Märker, K., Chemistry of Materials, (Mar 2019), DOI:10.1021/acs.chemmater.9b00140 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00140
Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells, Finegan, D. P., Journal of Power Sources, (Mar 2019), DOI:10.1016/j.jpowsour.2019.01.077 https://doi.org/10.1016/j.jpowsour.2019.01.077
Temperature Considerations for Li-ion Batteries Comparing Inductive Charging with Mains Device Charging Modes for Portable Electronic Devices, Loveridge, M., ACS Energy Letters, (Apr 2019), DOI:10.1021/acsenergylett.9b00663 https://pubs.acs.org/doi/10.1021/acsenergylett.9b00663
Spatially Resolving Lithiation in Silicon–Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography, Finegan, D. P., Nano Letters, (May 2019), DOI:10.1021/acs.nanolett.9b00955 https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b00955
Porous Metal-Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-ion Batteries, Malik R., Chemistry of Materials, (May 2019), DOI:10.1021/acs.chemmater.9b00933 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00933
Concentrated Electrolytes for Enhanced Stability of Al-Alloy Negative Electrodes in Li-Ion Batteries, Chan, A. K., Journal of The Electrochemical Society, (Jun 2019), DOI:10.1149/2.0581910jes https://iopscience.iop.org/article/10.1149/2.0581910jes
Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response, Wang, B., The Journal of Physical Chemistry C, (Aug 2019), DOI:10.1021/acs.jpcc.9b04292 https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b04292
Virtual unrolling of spirally-wound lithium-ion cells for correlative degradation studies and predictive fault detection, Kok, M. D. R., Sustainable Energy and Fuels, (Aug 2019), DOI:10.1039/C9SE00500E
Kerr gated Raman spectroscopy of LiPF6 salt and LiPF6-based organic carbonate electrolyte for Li-ion batteries, Cabo-Fernandez, L., Physical Chemistry Chemical Physics, (Sep 2019), DOI:10.1039/C9CP02430A https://pubs.rsc.org/en/content/articlelanding/2019/CP/C9CP02430A
Representative resolution analysis for X-ray CT: A Solid oxide fuel cell case study, Heenan, T. M. M., Chemical Engineering Science: X, (Oct 2019), DOI:10.1016/j.cesx.2019.100043 https://www.sciencedirect.com/science/article/pii/S2590140019300504
Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes, Zou, J., Electrochimica Acta, (Nov 2019), DOI:10.1016/j.electacta.2019.135284 https://www.sciencedirect.com/science/article/pii/S0013468619321565
In situ Electron paramagnetic resonance spectroelectrochemical study of graphene-based supercapacitors: Comparison between chemically reduced graphene oxide and nitrogen-doped reduced graphene oxide, Wang, B., Carbon, (Dec 2019), DOI:10.1016/j.carbon.2019.12.045 https://www.sciencedirect.com/science/article/abs/pii/S0008622319312801
Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes, Finegan, D. P., Nature Communications, (Jan 2020), DOI:10.1038/s41467-020-14467-x https://www.nature.com/articles/s41467-020-14467-x
Theoretical transmissions for X-ray computed tomography studies of lithium-ion battery cathodes, Heenan, T. M. M., Materials & Design, (Feb 2020), DOI:10.1016/j.matdes.2020.108585 https://www.sciencedirect.com/science/article/pii/S0264127520301192#s0120
Thermal Runaway of a Li-Ion Battery Studied by Combined ARC and Multi-Length Scale X-ray CT, Patel, D., Journal of The Electrochemical Society, (Apr 2020), DOI:10.1149/1945-7111/ab7fb6 https://iopscience.iop.org/article/10.1149/1945-7111/ab7fb6
Identifying degradation patterns of lithium-ion batteries from impedance spectroscopy using machine learning, Zhang, Y., Nature Communications, (Apr 2020), DOI:10.1038/s41467-020-15235-7 https://www.nature.com/articles/s41467-020-15235-7
Rapid Preparation of Geometrically Optimal Battery Electrode Samples for Nano Scale X-ray Characterisation, Tan, C., Journal of The Electrochemical Society, (Apr 2020), DOI:10.1149/1945-7111/ab80cd https://iopscience.iop.org/article/10.1149/1945-7111/ab80cd
3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling, Lu, X., Nature Communications, (Apr 2020), DOI:10.1038/s41467-020-15811-x https://www.nature.com/articles/s41467-020-15811-x (See also Multi-scale Modelling)
Resolving Li‐Ion Battery Electrode Particles Using Rapid Lab‐Based X‐Ray Nano‐Computed Tomography for High‐Throughput Quantification, Heenan, T. M. M., Advanced Science, (Apr 2020), DOI:10.1002/advs.202000362 https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202000362
Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithum metal, Hope, M. A., Nature Communications, (May 2020), DOI:10.1038/s41467-020-16114-x https://www.nature.com/articles/s41467-020-16114-x
Quantitative Relationships Between Pore Tortuosity, Pore Topology, and Solid Particle Morphology Using a Novel Discrete Particle Size Algorithm, Usseglio-Viretta, F., Journal of The Electrochemical Society, (Jun 2020), DOI:10.1149/1945-7111/ab913b https://iopscience.iop.org/article/10.1149/1945-7111/ab913b
Correlative acoustic time-of-flight spectroscopy and X-ray imaging to investigate gas-induced delamination in lithium-ion pouch cells during thermal runaway, Pham, M. T. M., Journal of Power Sources, (Jun 2020), DOI:10.1016/j.jpowsour.2020.228039 https://www.sciencedirect.com/science/article/abs/pii/S0378775320303426
Highly sensitive operando pressure measurements of Li-ion battery materials with a simply modified Swagelok cell, Ryall, N., Journal of The Electrochemical Society, (Jun 2020), DOI:10.1149/1945-7111/ab9e81 https://iopscience.iop.org/article/10.1149/1945-7111/ab9e81
Exploring cycling induced crystallographic change in NMC with X-ray diffraction computed tomography, Daemi, S.R., Physical Chemistry Chemical Physics, (Jun 2020), DOI:10.1039/D0CP01851A https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp01851a
Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties, Zhang, Z., ACS Applied Materials & Interfaces, (Jul 2020), DOI:10.1021/acsami.0c11190 https://pubs.acs.org/doi/abs/10.1021/acsami.0c11190 (See also LiSTAR)
Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Data in Brief, (Jul 2020), DOI:10.1016/j.dib.2020.106033 https://www.sciencedirect.com/science/article/pii/S2352340920309276 (See also Multi-scale Modelling)
Electrolyte Oxidation Pathways in Lithium-Ion Batteries, Rinkel, B., Journal of the American Chemical Society, (Jul 2020), DOI:10.1021/jacs.0c06363 https://pubs.acs.org/doi/abs/10.1021/jacs.0c06363
High Power Energy Storage from Carbon Electrodes using Highly Acidic Electrolytes, Cao, J., The Journal of Physical Chemistry C, (Aug 2020), DOI:10.1021/acs.jpcc.0c04930 https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c04930
Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., Applied Energy Materials, (Aug 2020), DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also NEXGENNA and Multi-scale Modelling)
Operando NMR of NMC811/graphite lithium-ion batteries: Structure, dynamics, and lithium metal deposition, Märker, K., Journal of the American Chemical Society, (Sep 2020), DOI:10.1021/jacs.0c06727 https://pubs.acs.org/doi/abs/10.1021/jacs.0c06727
An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Journal of Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abc4c1 https://iopscience.iop.org/article/10.1149/1945-7111/abc4c1 (See also Multi-scale Modelling)
The Detection of Monoclinic Zirconia and Non-Uniform 3D Crystallographic Strain in a Re-Oxidized Ni-YSZ Solid Oxide Fuel Cell Anode, Heenan, T. M. M., Crystals, (Oct 2020), DOI:10.3390/cryst10100941 https://www.mdpi.com/2073-4352/10/10/941
Synthesis of Layered Silicon-Graphene Hetero-structures by Wet Jet Milling for High Capacity Anodes in Li-ion Batteries, Malik, R., 2D Materials, (Oct 2020), DOI:10.1088/2053-1583/aba5ca https://iopscience.iop.org/article/10.1088/2053-1583/aba5ca
Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale, (Oct 2020), DOI:10.1039/D0NR04589F https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also ReLiB and Characterisation)
Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-Ion Batteries, Heenan, T. M. M., Advanced Energy Materials, (Nov 2020), DOI:10.1002/aenm.202002655 https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202002655 (See also Multi-scale Modelling)
The effects of ambient storage conditions on the structural and electrochemical properties of NMC-811 cathodes for Li-ion batteries, Busa, C., Electrochimica Acta, (Nov 2020), DOI:10.1016/j.electacta.2020.137358 https://www.sciencedirect.com/science/article/pii/S0013468620317515
Effect of Anode Slippage on Cathode Cut off Potential and Degradation Mechanisms in Ni-rich Li-ion Batteries, Dose, W., Cell Report Physical Science, (Nov 2020), DOI:10.1016/j.xcrp.2020.100253 https://www.sciencedirect.com/science/article/pii/S2666386420302757
Microstructural Evolution of Battery Electrodes During Calendaring, Lu, X., Joule, (Nov 2020), DOI:10.1016/j.joule.2020.10.010 https://www.sciencedirect.com/science/article/abs/pii/S2542435120304992
Self-activated cathode substrates in rechargeable zinc–air batteries, Guo, J., Energy Storage Materials, (Nov 2020), DOI:10.1016/j.ensm.2020.11.036 https://www.sciencedirect.com/science/article/abs/pii/S2405829720304487
Using In-Situ Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries Characterization: A Review on Recent Developments, Llewellyn, A.V., Condensed Matter, (Nov 2020), DOI:10.3390/condmat5040075 https://www.mdpi.com/2410-3896/5/4/75 (See also LiSTAR and Characterisation)
Sample Dependence of Magnetism in the Next Generation Cathode Material LiNi0. 8Mn0.1Co0.1O2, Mukherjee, P., Inorganic Chemistry, (Dec 2020), DOI:10.1021/acs.inorgchem.0c02899 https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c02899
Phase behaviour during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries, Xu, C., Advanced Energy Materials, (Dec 2020), DOI:10.1002/aenm.202003404 https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202003404
Operando Bragg Coherent Diffraction Imaging of LiNi0.8Mn0.1Co0.1O2 Primary Particles within Commercially Printed NMC811 Electrode Sheets, Estandarte, A. K. C., ACS Nano, (Dec 2020), DOI:10.1021/acsnano.0c08575 https://pubs.acs.org/doi/abs/10.1021/acsnano.0c08575 (See also Characterisation)
Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities, Liu, Y., Advanced Functional Materials, (Jan 2021), DOI:10.1002/adfm.202010445 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202010445
Prevention of lithium-ion battery thermal runaway using polymer-substrate current collectors, Pham, M. T. M., Cell Report Physical Science, (Mar 2021), DOI:10.1016/j.xcrp.2021.100360 https://www.sciencedirect.com/science/article/pii/S266638642100045X
Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization, Dong, H., Advanced Materials, (Apr 2021), DOI:10.1002/adma.202007548 https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202007548
Potentiometric MRI of a superconcentrated lithium electrolyte: testing the irreversible thermodynamics approach, A.A. Wang, ACS Energy Letters, (Aug 2021), DOI:10.1021/acsenergylett.1c01213 https://pubs.acs.org/doi/10.1021/acsenergylett.1c01213 (See also Multi-scale Modelling)
Multi-Scale Modelling
Catalysing surface film formation, Hoster, H.E., Nature Catalysis, (Apr 2018), DOI:10.1038/s41929-018-0060-2 https://www.nature.com/articles/s41929-018-0060-2
Solid electrolyte interphase: Can faster formation at lower potentials yield better performance?, Antonopoulos, B.K., Electrochimica Acta, (Apr 2018), DOI:10.1016/j.electacta.2018.03.007 https://www.sciencedirect.com/science/article/pii/S001346861830495X
Formation of the Solid Electrolyte Interphase at Constant Potentials: a Model Study on Highly Oriented Pyrolytic Graphite, Antonopoulos, B.K., Batteries & Supercaps, (Jun 2018), DOI:10.1002/batt.201800029 https://onlinelibrary.wiley.com/doi/full/10.1002/batt.201800029
Quantifying structure dependent responses in Li-ion cells with excess Li spinel cathodes: matching voltage and entropy profiles through mean field models, Schlueter, S., Physical Chemistry Chemical Physics, (Jul 2018), DOI:10.1039/C8CP02989J https://pubs.rsc.org/en/Content/ArticleLanding/2018/CP/C8CP02989J
Controlled hydroxy-fluorination reaction of anatase to promote Mg2+ mobility in rechargeable magnesium batteries, Ma, J., Chemical Communications, (Aug 2018), DOI:10.1039/C8CC04136A https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc04136a
Correlated Polyhedral Rotations in the Absence of Polarons During Electrochemical Insertion of Lithium in ReO3, Bashian, N., ACS Energy Letters, (Sep 2018), DOI:10.1021/acsenergylett.8b01179 https://pubs.acs.org/doi/10.1021/acsenergylett.8b01179
Oxidation states and ionicity, Walsh, A., Nature Materials, (Oct 2018), DOI:10.1038/s41563-018-0165-7 https://www.nature.com/articles/s41563-018-0165-7
Modelling the effects of thermal gradients induced by tab and surface cooling on lithium ion cell performance, Zhao, Y., Journal of The Electrochemical Society, (Oct 2018), DOI:10.1149/2.0901813jes https://iopscience.iop.org/article/10.1149/2.0901813jes
Quick-start guide for first-principles modelling of semiconductor interfaces, Park, J.-S., Journal of Physics: Energy, (Nov 2018), DOI:10.1088/2515-7655/aad928 https://iopscience.iop.org/article/10.1088/2515-7655/aad928
4D Visualisation of In-situ Nano-compression of Li-ion Cathode Materials to Mimic Early Stage Calendering, Daemi, S.R., Materials Horizons, (Dec 2018), DOI:10.1039/C8MH01533C https://pubs.rsc.org/en/content/articlelanding/2019/MH/C8MH01533C (See also Degradation)
Impact of Anion Vacancies on the Local and Electronic Structures of Iron-Based Oxyfluoride Electrodes, Burbano, M., The Journal of Physical Chemistry Letters, (Jan 2019), DOI:10.1021/acs.jpclett.8b03503 https://pubs.acs.org/doi/10.1021/acs.jpclett.8b03503
Aligned Ionogel Electrolytes for High‐Temperature Supercapacitors, Liu, X., Advanced Science, (Jan 2019), DOI:10.1002/advs.201801337 https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201801337
Non-equilibrium crystallization pathways of manganese oxides in aqueous solution, Sun, W., Nature Communications, (Feb 2019), DOI:10.1038/s41467-019-08494-6 https://www.nature.com/articles/s41467-019-08494-6
pyscses: a PYthon Space-Charge Site-Explicit Solver, Wellock, G.L., The Journal of Open Source Software, (Mar 2019), DOI:10.21105/joss.01209 https://joss.theoj.org/papers/803ed6dd19f453819bdd3ed9ceadf3b3
Incorporating Dendrite Growth into Continuum Models of Electrolytes: Insights from NMR Measurements and Inverse Modelling, Sethurajan, A.K., Journal of The Electrochemical Society, (May 2019), DOI:10.1149/2.0921908jes https://iopscience.iop.org/article/10.1149/2.0921908jes
crystal-torture: A crystal tortuosity module, O’Rourke, C., The Journal of Open Source Software, (Jun 2019), DOI:10.21105/joss.01306 https://joss.theoj.org/papers/10.21105/joss.01306
The Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium-Ion Batteries, Hales, A., Journal of The Electrochemical Society, (Jul 2019), DOI:10.1149/2.0191912jes https://iopscience.iop.org/article/10.1149/2.0191912jes
Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: I. Physical Model, Sulzer, V., Journal of The Electrochemical Society, (Jul 2019), DOI:10.1149/2.0301910jes https://iopscience.iop.org/article/10.1149/2.0301910jes
Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: Part II. Asymptotic Analysis, Sulzer, V., Journal of The Electrochemical Society, (Jul 2019), DOI:10.1149/2.0441908jes https://iopscience.iop.org/article/10.1149/2.0441908jes
Smart and Hybrid Balancing System: Design, Modeling and Experimental Demonstration, Pinto de Castro, R., IEEE Transactions on Vehicular Technology, (Jul 2019), DOI:10.1109/TVT.2019.2929653 https://ieeexplore.ieee.org/abstract/document/8768008
Lithium-ion battery fast charging: A review, Tomaszewska, A., eTransportation, (Aug 2019), DOI:10.1016/j.etran.2019.100011 https://www.sciencedirect.com/science/article/pii/S2590116819300116
The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs, Liu, X., Applied Energy, (Aug 2019), DOI:10.1016/j.apenergy.2019.04.108 https://www.sciencedirect.com/science/article/pii/S0306261919307810
How to Cool Lithium Ion Batteries: Optimising Cell Design using a Thermally Coupled Model, Zhao, Y., Journal of The Electrochemical Society, (Aug 2019), DOI:10.1149/2.0501913jes https://iopscience.iop.org/article/10.1149/2.0501913jes
Communication—Why High-Precision Coulometry and Lithium Plating Studies on Commercial Lithium-Ion Cells Require Thermal Baths, Zulke, A., Journal of The Electrochemical Society, (Aug 2019), DOI:10.1149/2.0841913jes https://iopscience.iop.org/article/10.1149/2.0841913jes
Highly Anisotropic Thermal Transport in LiCoO2, Yang, H., The Journal of Physical Chemistry Letters, (Sep 2019), DOI:10.1021/acs.jpclett.9b02073 https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02073
Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions, Pang, M., Physical Chemistry Chemical Physics, (Sep 2019), DOI:10.1039/C9CP03886H https://pubs.rsc.org/no/content/articlelanding/2019/cp/c9cp03886h/unauth
Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries, Reniers, J., Journal of The Electrochemical Society, (Sep 2019), DOI:10.1149/2.0281914jes https://iopscience.iop.org/article/10.1149/2.0281914jes
Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review, Li, Y., Renewable and Sustainable Energy Reviews, (Oct 2019), DOI:10.1016/j.rser.2019.109254 https://www.sciencedirect.com/science/article/abs/pii/S136403211930454X
Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells, Ai, W., Journal of The Electrochemical Society, (Oct 2019), DOI:10.1149/2.0122001JES https://iopscience.iop.org/article/10.1149/2.0122001JES
Composition-dependent thermodynamic and mass-transport characterization of lithium hexafluorophosphate in propylene carbonate, Hou, T., Electrochimica Acta, (Oct 2019), DOI:10.1016/j.electacta.2019.135085 https://www.sciencedirect.com/science/article/pii/S0013468619319565
Exploiting cationic vacancies for increased energy densities in dual-ion batteries, Koketsu, T., Energy Storage Materials, (Oct 2019), DOI:10.1016/j.ensm.2019.10.019 https://www.sciencedirect.com/science/article/pii/S2405829719310153
An asymptotic derivation of a single particle model with electrolyte, Marquis, S, Journal of The Electrochemical Society, (Nov 2019), DOI:10.1149/2.0341915jes https://iopscience.iop.org/article/10.1149/2.0341915jes
Battery Safety: Data-Driven Prediction of Failure, Finegan, D. P., Joule, (Nov 2019), DOI:10.1016/j.joule.2019.10.013 https://www.sciencedirect.com/science/article/abs/pii/S254243511930529X
Transitions of lithium occupation in graphite: A physically informed model in the dilute lithium occupation limit supported by electrochemical and thermodynamic measurements, Mercer, M., Electrochimica Acta, (Nov 2019), DOI:10.1016/j.electacta.2019.134774 https://www.sciencedirect.com/science/article/pii/S0013468619316457
Multi-scale Electrolyte Transport Simulations for Lithium Ion Batteries, Hanke, F., Journal of The Electrochemical Society, (Nov 2019), DOI:10.1149/2.0222001JES https://iopscience.iop.org/article/10.1149/2.0222001JES
Native Defects and their Doping Response in the Lithium Solid Electrolyte Li7La3Zr2O12, Squires, A. G., Chemistry of Materials, (Dec 2019), DOI:10.1021/acs.chemmater.9b04319 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b04319
Descriptors for Electron and Hole Charge Carriers in Metal Oxides, Davies, D. W., The Journal of Physical Chemistry Letters, (Dec 2019), DOI:10.1021/acs.jpclett.9b03398 https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b03398
Effect of Temperature on The Kinetics of Electrochemical Insertion of Li-Ions into a Graphite Electrode Studied by Kinetic Monte Carlo, Gavilán-Arriazu, E. M., Journal of The Electrochemical Society, (Jan 2020), DOI:10.1149/2.0332001JES https://iopscience.iop.org/article/10.1149/2.0332001JES
The Surface Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium-Ion Battery Pouch Cells, Hales, A., Journal of The Electrochemical Society, (Jan 2020), DOI:10.1149/1945-7111/ab6985 https://iopscience.iop.org/article/10.1149/1945-7111/ab6985
Generalised single particle models for high-rate operation of graded lithium-ion electrodes: systematic derivation and validation, Richardson, G., Electrochimica Acta, (Feb 2020), DOI:10.1016/j.electacta.2020.135862 https://www.sciencedirect.com/science/article/pii/S0013468620302541
Mechanics of the Ideal Double-Layer Capacitor, Monroe, C. W., Journal of The Electrochemical Society, (Feb 2020), DOI:10.1149/1945-7111/ab6b04 https://iopscience.iop.org/article/10.1149/1945-7111/ab6b04 (See also SOLBAT)
Parameterization of prismatic lithium–iron–phosphate cells through a streamlined thermal/electrochemical model, Chu, H. N., Journal of Power Sources, (Mar 2020), DOI:10.1016/j.jpowsour.2020.227787 https://www.sciencedirect.com/science/article/abs/pii/S0378775320300902
A practical approach to large scale electronic structure calculations in electrolyte solutions via continuum-embedded linear-scaling DFT, Dziedzic, J., The Journal of Physical Chemistry C, (Mar 2020), DOI:10.1021/acs.jpcc.0c00762 https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00762
A Python package to process the data produced by novonix high-precision battery-tester, Gonzalez-Perez V., Journal of open research software, (Mar 2020), DOI:doi.org/10.5334/jors.281 https://openresearchsoftware.metajnl.com/articles/10.5334/jors.281/
Multiscale Lithium-Battery Modeling from Materials to Cells, Li, G., Annual Review of Chemical and Biomolecular Engineering, (Mar 2020), DOI:10.1146/annurev-chembioeng-012120-083016 https://www.annualreviews.org/doi/pdf/10.1146/annurev-chembioeng-012120-083016 (See also SOLBAT)
Transition Metal Migration Can Facilitate Ionic Diffusion in Defect Garnet Based Intercalation Electrodes, Bashian, N., ACS Energy Letters, (Apr 2020), DOI:10.1021/acsenergylett.0c00376 https://pubs.acs.org/doi/abs/10.1021/acsenergylett.0c00376
Lithium Intercalation edge effects and doping implications for graphite anodes, Peng C., Journal of Materials Chemistry A, (Apr 2020), DOI:10.1039/C9TA13862E https://pubs.rsc.org/en/content/articlelanding/2020/ta/c9ta13862e
In-situ fabrication of carbon-metal fabrics as freestanding electrodes for high-performance flexible energy storage devices, Liu X., Energy Storage Materials, (Apr 2020), DOI:10.1016/j.ensm.2020.04.001 https://www.sciencedirect.com/science/article/abs/pii/S2405829720301203
Designer uniform Li plating/stripping through lithium-cobalt alloying hierarchical scaffolds for scalable high-performance Li metal anodes, Liu X., Journal of Energy Chemistry, (Apr 2020), DOI:10.1016/j.jechem.2020.03.059 https://www.sciencedirect.com/science/article/abs/pii/S2095495620301911
Derivation of an Effective Thermal Electrochemical Model for Porous Electrode Batteries using Asymptotic Homogenisation, Hunt, M. J., Journal of Engineering Mathematics, (Apr 2020), DOI:10.1007/s10665-020-10045-8 https://link.springer.com/article/10.1007/s10665-020-10045-8
3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling, Lu, X., Nature Communications, (Apr 2020), DOI:10.1038/s41467-020-15811-x https://www.nature.com/articles/s41467-020-15811-x (See also Degradation)
Physical Origin of the Differential Voltage Minimum Associated with Lithium Plating in Li-Ion Batteries, O'Kane, S., Journal of The Electrochemical Society, (May 2020), DOI:10.1149/ 1945-7111/ab90ac https://iopscience.iop.org/article/10.1149/1945-7111/ab90ac
Free radicals: making a case for battery modelling, Howey D.A., The Electrochemical Society Interface, (May 2020), DOI:10.1149/2.F03204IF https://iopscience.iop.org/article/10.1149/2.F03204IF
Development of experimental techniques for parametrization of multi-scale Li-ion battery models, Chen C.-H., Journal of The Electrochemical Society, (May 2020), DOI:10.1149/1945-7111/ab9050 https://iopscience.iop.org/article/10.1149/1945-7111/ab9050
Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics, Gavilán-Arriazu, E. M., Journal of Solid State Electrochemistry, (Jun 2020), DOI:10.1007/s10008-020-04717-9 https://link.springer.com/article/10.1007%2Fs10008-020-04717-9
Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries, Gayon-Lombardo, A., npj Computational Materials, (Jun 2020), DOI:10.1038/s41524-020-0340-7 https://www.nature.com/articles/s41524-020-0340-7
Fostering a sustainable community in batteries, Baker J.A., ACS Energy Letters, (Jun 2020), DOI:10.1021/acsenergylett.0c01304 https://pubs.acs.org/doi/10.1021/acsenergylett.0c01304
Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence for smart battery management systems, Wu, B., Energy and AI, (Jul 2020), DOI:10.1016/j.egyai.2020.100016 https://www.sciencedirect.com/science/article/pii/S2666546820300161
Chemical trends in the lattice thermal conductivity of NMC battery cathodes, Yang H., Chemistry of Materials, (Jul 2020), DOI:10.1021/acs.chemmater.0c02908 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.0c02908
Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes, Wang, A. A., Electrochimica Acta, (Jul 2020), DOI:10.1016/j.electacta.2020.136688 https://www.sciencedirect.com/science/article/pii/S0013468620310811
Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Data in Brief, (Jul 2020), DOI:10.1016/j.dib.2020.106033 https://www.sciencedirect.com/science/article/pii/S2352340920309276 (See also Degradation)
Probing heterogeneity in Li-ion batteries with coupled multiscale models of electrochemistry and thermal transport using tomographic domains, Tranter, T. G., Journal of The Electrochemical Society, (Jul 2020), DOI:10.1149/1945-7111/aba44b https://iopscience.iop.org/article/10.1149/1945-7111/aba44b
Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries, Davies, D. W., IOP SciNotes, (Jul 2020), DOI:10.1088/2633-1357/ab9750 https://iopscience.iop.org/article/10.1088/2633-1357/ab9750 (See also FutureCat)
Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., Applied Energy Materials, (Aug 2020), DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also NEXGENNA and Degradation)
The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead, Nguyen, T., npj Computational Materials, (Aug 2020), DOI:10.1038/s41524-020-00386-4 https://www.nature.com/articles/s41524-020-00386-4
Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements, Robinson, J., Journal of The Electrochemical Society, (Aug 2020), DOI:10.1149/1945-7111/abb174 https://iopscience.iop.org/article/10.1149/1945-7111/abb174/meta (See also LiSTAR)
Electronic Structure Calculations in Electrolyte Solutions: Methods for Neutralization of Extended Charged Interfaces, Bhandari, A., Journal of Chemical Physics, (Sep 2020), DOI:10.1063/5.0021210 https://aip.scitation.org/doi/abs/10.1063/5.0021210
Voltage Hysteresis Model for Silicon Electrodes for Lithium Ion Batteries, Including Multi-Step Phase Transformations, Crystallization and Amorphization, Jiang, Y., Journal of The Electrochemical Society, (Sep 2020), DOI:10.1149/1945-7111/abbbba https://iopscience.iop.org/article/10.1149/1945-7111/abbbba
A Suite of Reduced-Order Models of a Single-Layer Lithium-ion Pouch Cell, Marquis, S., Journal of the Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abbce4 https://iopscience.iop.org/article/10.1149/1945-7111/abbce4
An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Journal of The Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abc4c1 https://iopscience.iop.org/article/10.1149/1945-7111/abc4c1 (See also Degradation)
4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of The Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abbfd9 https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9 (See also LiSTAR and Characterisation)
Communication-Identifying and Managing Reversible Capacity Losses that falsify cycle ageing tests of Li-ion cells, Burrell R., Journal of The Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abbce1 https://iopscience.iop.org/article/10.1149/1945-7111/abbce1
The Cell Cooling Coefficient as a Design Tool to Optimise Thermal Management of Lithium-Ion Cells in Battery Packs, Hales, A., eTransportation, (Nov 2020), DOI:10.1016/j.etran.2020.100089 https://www.sciencedirect.com/science/article/pii/S2590116820300473
Finding a better fit for lithium ion batteries: A simple, novel, load dependent, modified equivalent circuit model and parameterization method, Hua, X., Journal of Power Sources, (Nov 2020), DOI:10.1016/j.jpowsour.2020.229117 https://www.sciencedirect.com/science/article/abs/pii/S0378775320314129
Voltage hysteresis during lithiation/delithiation of graphite associated with meta-stable carbon stackings, Mercer, M., Journal of Materials Chemistry A, (Nov 2020), DOI:10.1039/D0TA10403E https://pubs.rsc.org/en/content/articlehtml/2020/ta/d0ta10403e
Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-Ion Batteries, Heenan, T. M. M., Advanced Energy Materials, (Nov 2020), DOI:10.1002/aenm.202002655 https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202002655 (See also Degradation)
Evidence for a Solid-Electrolyte Inductive Effect in the Superionic Conductor Li10Ge1–x SnxP2S12, Culver, S. P., Journal of the American Chemical Society, (Dec 2020), DOI:10.1021/jacs.0c10735 https://pubs.acs.org/doi/abs/10.1021/jacs.0c10735
Thermodynamically consistent parameterization of electrochemical-potential derivatives within non-neutral, concentrated electrolytic fluids, Goyal, P., Electrochimica Acta, (Dec 2020), DOI:10.1016/j.electacta.2020.137638 https://www.sciencedirect.com/science/article/abs/pii/S0013468620320314
The Application of Data-Driven Methods and Physics-Based Learning for Improving Battery Safety, Finegan, D. P., Joule, (Dec 2020), DOI:10.1016/j.joule.2020.11.018 https://www.sciencedirect.com/science/article/abs/pii/S2542435120305626
Communication—Prediction of Thermal Issues for Larger Format 4680 Cylindrical Cells and Their Mitigation with Enhanced Current Collection, Tranter, T. G., Journal of The Electrochemical Society, (Dec 2020), DOI:10.1149/1945-7111/abd44f https://iopscience.iop.org/article/10.1149/1945-7111/abd44f
The prismatic surface cell cooling coefficient: A novel cell design optimisation tool & thermal parameterization method for a 3D discretised electro-thermal equivalent-circuit model, Hua, X., eTransportation, (Jan 2021), DOI:0.1016/j.etran.2020.100099 https://www.sciencedirect.com/science/article/pii/S2590116820300576
A Shrinking-Core Model for the Degradation of High-Nickel Cathodes (NMC811) in Li-Ion Batteries: Passivation Layer Growth and Oxygen Evolution, Ghosh, A., Journal of The Electrochemical Society, (Jan 2021), DOI:10.1149/1945-7111/abdc71 https://iopscience.iop.org/article/10.1149/1945-7111/abdc71
Hybridizing Lead–Acid Batteries with Supercapacitors: A Methodology, Luo, X., Energies, (Jan 2021), DOI:10.3390/en14020507 https://www.mdpi.com/1996-1073/14/2/507
Current Imbalance in Parallel Battery Strings Measured Using a Hall‐Effect Sensor Array, Luca, R., Energy Technology, (Feb 2021), DOI:10.1002/ente.202001014 https://onlinelibrary.wiley.com/doi/full/10.1002/ente.202001014
Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management, Lander, L., Applied Energy, (Mar 2021), DOI:10.1016/j.apenergy.2021.116737 https://www.sciencedirect.com/science/article/abs/pii/S0306261921002518
Solvent engineered synthesis of layered SnO for high-performance anodes, Jaskaniec, S., 2D Materials and Applications, (Mar 2021), DOI:10.1038/s41699-021-00208-1 https://www.nature.com/articles/s41699-021-00208-1
Lithium-Ion Diagnostics: The First Quantitative In-Operando Technique for Diagnosing Lithium-Ion Battery Degradation Modes under Load with Realistic Thermal Boundary Conditions, Prosser, R., Journal of the Electrochemical Society, (Mar 2021), DOI:10.1149/1945-7111/abed28 https://iopscience.iop.org/article/10.1149/1945-7111/abed28/meta
Lithium Ion Battery Degradation: What you need to know, Edge, J. S., Physical Chemistry Chemical Physics, (Mar 2021), DOI:10.1039/D1CP00359C https://pubs.rsc.org/en/content/articlehtml/2021/cp/d1cp00359c
How Machine Learning Will Revolutionize Electrochemical Sciences, Mistry, A., ACS Energy Letters, (Mar 2021), DOI:10.1021/acsenergylett.1c00194 https://pubs.acs.org/doi/abs/10.1021/acsenergylett.1c00194
Solvent engineered synthesis of layered SnO for high-performance anodes, Jaskaniec, S., Nature (npj 2D Materials and Applications), (Mar 2021), DOI:10.1038/s41699-021-00208-1 https://www.nature.com/articles/s41699-021-00208-1
Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion, Kench, S., Nature Machine Intelligence, (Apr 2021), DOI:10.1038/s42256-021-00322-1 https://www.nature.com/articles/s42256-021-00322-1
Guiding the Design of Heterogeneous Electrode Microstructures for Li‐Ion Batteries: Microscopic Imaging, Predictive Modelling, and Machine Learning, Xu, H., Advanced Energy Materials, (Apr 2021), DOI:10.1002/aenm.202003908 https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202003908
Optimal cell tab design and cooling strategy for cylindrical lithium-ion batteries, Li, S., Journal of Power Sources, (Apr 2021), DOI:10.1016/j.jpowsour.2021.229594 https://www.sciencedirect.com/science/article/abs/pii/S0378775321001403
Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries, Pang, M., Materials Today, (Apr 2021), DOI:10.1016/j.mattod.2021.02.011 https://www.sciencedirect.com/science/article/abs/pii/S1369702121000572
Recent advances in acoustic diagnostics for electrochemical power systems, Majasan, J., Journal of Physics: Energy, (Apr 2021), DOI:10.1088/2515-7655/abfb4a https://iopscience.iop.org/article/10.1088/2515-7655/abfb4a
Intercalation Voltages for Spinel LixMn2O4 (0≤ x≤ 2) Cathode Materials: Calibration of Calculations with the ONETEP Linear-Scaling DFT Code, Ledwaba, R.S., Materials Today Communications, (Apr 2021), DOI:10.1016/j.mtcomm.2021.102380 https://www.sciencedirect.com/science/article/abs/pii/S235249282100372X
Bayesian Parameter Estimation Applied to the Li-ion Battery Single Particle Model with Electrolyte Dynamics, Aitio, A., IFAC-PapersOnLine, (Apr 2021), DOI:10.1016/j.ifacol.2020.12.1770 https://www.sciencedirect.com/science/article/pii/S2405896320323788
Asymptotic Reduction of a Lithium-ion Pouch Cell Model, Timms, R., SIAM Journal on Applied Mathematics, (May 2021), DOI:10.1137/20M1336898 https://epubs.siam.org/doi/abs/10.1137/20M1336898
Python Battery Mathematical Modelling (PyBaMM), Sulzer, V., Journal of open research software, (Jun 2021), DOI:10.5334/jors.309 https://openresearchsoftware.metajnl.com/articles/10.5334/jors.309/
DandeLiion v1: An extremely fast solver for the Newman model of lithium-ion battery (dis) charge, Korotkin, I., Journal of The Electrochemical Society, (Jun 2021), DOI:10.1149/1945-7111/ac085f https://iopscience.iop.org/article/10.1149/1945-7111/ac085f
Physical Modelling of the Slow Voltage Relaxation Phenomenon in Lithium-Ion Batteries, Kirk, T. L., Journal of The Electrochemical Society, (Jun 2021), DOI:10.1149/1945-7111/ac0bf7 https://iopscience.iop.org/article/10.1149/1945-7111/ac0bf7
Heat Generation and a Conservation Law for Chemical Energy in Lithium-ion Batteries, Richardson, G., Electrochimica Acta, (Jul 2021), DOI:10.1016/j.electacta.2021.138909 https://www.sciencedirect.com/science/article/abs/pii/S0013468621011993
Financial Viability of Electric Vehicle Lithium-Ion Battery Recycling, Lander, L., iScience, (Jul 2021), DOI:10.1016/j.isci.2021.102787 https://www.sciencedirect.com/science/article/pii/S2589004221007550
The challenge and opportunity of battery lifetime prediction from field data, Sulzer V., Joule, (Jul 2021), DOI:10.1016/j.joule.2021.06.005 https://www.sciencedirect.com/science/article/abs/pii/S2542435121002932
A consensus algorithm for multi-objective battery balancing, Barreras J.V., Energies, (Jul 2021), DOI:10.3390/en14144279 https://www.mdpi.com/1996-1073/14/14/4279
Potentiometric MRI of a superconcentrated lithium electrolyte: testing the irreversible thermodynamics approach, A.A. Wang, ACS Energy Letters, (Aug 2021), DOI:10.1021/acsenergylett.1c01213 https://pubs.acs.org/doi/10.1021/acsenergylett.1c01213 (See also Degradation)
Systematic derivation and validation of a reduced thermal-electrochemical model for lithium-ion batteries using asymptotic methods, Planella, F. B., Electrochimica Acta, (Aug 2021), DOI:10.1016/j.electacta.2021.138524 https://www.sciencedirect.com/science/article/pii/S0013468621008148
ReLiB: Recycling and reuse of lithium-ion batteries
Can Electric Vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point, Raugei, M., Journal of Cleaner Production, (Nov 2018), DOI:10.1016/j.jclepro.2018.08.107 https://doi.org/10.1016/j.jclepro.2018.08.107
Net Energy Analysis must not compare apples and oranges, Raugei, M., Nature Energy, (Jan 2019), DOI:10.1038/s41560-019-0327-0 https://doi.org/10.1038/s41560-019-0327-0
Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles , Raugei, M., Journal of Cleaner Production, (Mar 2019), DOI:10.1016/j.jclepro.2018.12.237 https://www.sciencedirect.com/science/article/pii/S0959652618339593
Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies, Rajaeifar, M. A., Renewable and Sustainable Energy Reviews, (May 2019), DOI:10.1016/j.rser.2019.05.004 https://www.sciencedirect.com/science/article/pii/S1364032119303107?via%3Dihub
Production of biogenic nanoparticles for the reduction of 4-nitrophenol and oxidative laccase-like reactions., Capeness, M. J., Frontiers in Microbiology, (May 2019), DOI:10.3389/fmicb.2019.00997 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520526
Energy Return On Investment – setting the record straight, Raugei, M., Joule, (Aug 2019), DOI:10.1016/j.joule.2019.07.020 https://www.sciencedirect.com/science/article/abs/pii/S2542435119303642
Our Waste, Our resources; A Strategy for England' - Switching to a circular economy through the use of extended producer responsibility, Dawson, L., Environmental Law Review, (Sep 2019), DOI:10.1177/1461452919851943 https://journals.sagepub.com/doi/10.1177/1461452919851943
The role of electric vehicles in near-term mitigation pathways, Hill, G., Applied Energy, (Oct 2019), DOI:10.1016/j.apenergy.2019.04.107 https://www.sciencedirect.com/science/article/pii/S0306261919307834
Recycling End of Life Lithium Ion Batteries For A Circular Economy: Beyond Pyrometallurgy, Harper, G., Nature, (Nov 2019), DOI:10.1038/s41586-019-1682-5 https://www.nature.com/articles/s41586-019-1682-5
Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents, Al-Murshedi, A. Y. M., The International Journal of Surface Engineering and Coatings, (Nov 2019), DOI:10.1080/00202967.2019.1671062 https://www.tandfonline.com/doi/abs/10.1080/00202967.2019.1671062
What are the energy and environmental impacts of adding battery storage to photovoltaics?, Raugei, M., Energy Technology, (Jan 2020), DOI:10.1002/ente.201901146 https://onlinelibrary.wiley.com/doi/abs/10.1002/ente.201901146
Beyond the EVent horizon: Technological Obsolescence in UK Battery Electric Vehicles from 2011 – 2025, Skeete, J. P., Energy Research & Social Science, (May 2020), DOI:10.1016/j.erss.2020.101581 https://www.sciencedirect.com/science/article/pii/S2214629620301572
Disassembly of Li Ion Cells—Characterization and Safety Considerations of a Recycling Scheme, Marshall, J., Metals, (Jun 2020), DOI:10.3390/met10060773 https://www.mdpi.com/2075-4701/10/6/773
The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., Journal of Chemical Education, (Jun 2020), DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282 (See also CATMAT and NEXTRODE)
Experimental Visualization of Commercial Lithium Ion Battery Cathodes: Distinguishing Between the Microstructure Components Using Atomic Force Microscopy, Terreblanche, J. S., The Journal of Physical Chemistry C, (Jun 2020), DOI:10.1021/acs.jpcc.0c02713 https://pubs.acs.org/doi/10.1021/acs.jpcc.0c02713
A review of physical processes used in the safe recycling of lithium ion batteries, Sommerville, R., Sustainable Materials and Technologies, (Jul 2020), DOI:10.1016/j.susmat.2020.e00197 https://www.sciencedirect.com/science/article/abs/pii/S2214993719303501
A circular economy for electric vehicle batteries: driving the change, Ahuja, J., Journal of Property, Planning and Environmental Law, (Aug 2020), DOI:10.1108/JPPEL-02-2020-0011 https://www.emerald.com/insight/content/doi/10.1108/JPPEL-02-2020-0011
Circular economy strategies for electric vehicle batteries reduce reliance on raw materials, Baars, J., Nature Sustainability, (Sep 2020), DOI:10.1038/s41893-020-00607-0 https://www.nature.com/articles/s41893-020-00607-0
A rapid neural network–based state of health estimation scheme for screening of end of life electric vehicle batteries, Rastegarpanah, A., Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, (Sep 2020), DOI:10.1177/0959651820953254 https://journals.sagepub.com/doi/full/10.1177/0959651820953254
The EV revolution: The road ahead for critical raw materials demand, Jones, B., Applied Energy, (Oct 2020), DOI:10.1016/j.apenergy.2020.115072 https://www.sciencedirect.com/science/article/pii/S0306261920305845
The EV revolution: The road ahead for critical raw materials demand, Jones, B., Applied Energy, (Oct 2020), DOI:10.1016/j.apenergy.2020.115072 https://www.sciencedirect.com/science/article/pii/S0306261920305845
Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale, (Oct 2020), DOI:10.1039/D0NR04589F https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also Characterisation and Degradation)
A qualitative assessment of lithium ion battery recycling processes, Sommerville, R., Resources, Concervation and Recycling, (Oct 2020), DOI:10.1016/j.resconrec.2020.105219 https://www.sciencedirect.com/science/article/abs/pii/S0921344920305358
Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents, Pateli, I. M., Green Chemistry, (Nov 2020), DOI:10.1039/D0GC03491F https://pubs.rsc.org/en/content/articlelanding/2020/gc/d0gc03491f
Does Energy Storage Provide a Profitable Second Life for EV batteries?, Wu, W., Energy Economics, (Nov 2020), DOI:10.1016/j.eneco.2020.105010 https://www.sciencedirect.com/science/article/pii/S0140988320303509
A review of current collectors for lithium-ion batteries, Zhu, P., Journal of Power Sources, (Dec 2020), DOI:10.1016/j.jpowsour.2020.229321 https://www.sciencedirect.com/science/article/abs/pii/S0378775320316098
Methodologies for Large-Size Pouch Lithium-Ion Batteries End-of-Life Gateway Detection in the Second-Life Application, Attidekou, P. S., Journal of The Electrochemical Society, (Dec 2020), DOI:10.1149/1945-7111/abd1f1 https://iopscience.iop.org/article/10.1149/1945-7111/abd1f1
Thermal and mechanical abuse of electric vehicle pouch cell modules, Christensen, P., Applied Thermal Engineering, (Jan 2021), DOI:10.1016/j.applthermaleng.2021.116623 https://www.sciencedirect.com/science/article/abs/pii/S135943112100079X
A Unified Method for the Recovery of Metals from Chalcogenides, Bevan, F., ACS Sustainable Chemistry Engineering, (Feb 2021), DOI:10.1021/acssuschemeng.0c09120 https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.0c09120
A Training Free Technique for 3D Object Recognition using the Concept of Vibration, Energy and Frequency, Joshi, P., Computers & Graphics, (Feb 2021), DOI:10.1016/j.cag.2021.01.014 https://www.sciencedirect.com/science/article/abs/pii/S0097849321000145
Simultaneous Tactile Exploration and Grasp Refinement for Unknown Objects, de Farias, C., IEEE Robotics and Automation Letters, (Mar 2021), DOI:10.1109/LRA.2021.3063074 https://ieeexplore.ieee.org/abstract/document/9366782
Towards robotizing the processes of testing lithium-ion batteries, Rastegarpanah, A., Proceedings of the IMechE, Part 1: Journal of Systems and Control Engineering, (Mar 2021), DOI:10.1177/0959651821998599 https://journals.sagepub.com/doi/full/10.1177/0959651821998599
Towards Robotizing the Processes of Testing Lithium-ion Batteries, Rastegarpanah, A., SAGE journals, (Mar 2021), DOI:10.1177/0959651821998599 https://journals.sagepub.com/doi/full/10.1177/0959651821998599
Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic Environments, Reza Azizi, M., Robotics, (Mar 2021), DOI:10.3390/robotics10010048 https://www.mdpi.com/2218-6581/10/1/48
Controlling Radiolysis Chemistry on the Nanoscale in Liquid Cell Scanning Transmission Electron Microscopy, Lee, J., Physical Chemistry Chemical Physics, (Mar 2021), DOI:10.1039/D0CP06369J https://pubs.rsc.org/en/content/articlehtml/2021/cp/d0cp06369j (See also Characterisation)
A Training Free Technique for 3D Object Recognition using the Concept of Vibration, Energy and Frequency, Joshi, P., Computers & Graphics, (Apr 2021), DOI:10.1016/j.cag.2021.01.014 https://www.sciencedirect.com/science/article/abs/pii/S0097849321000145
Lithium ion battery recycling using high-intensity ultrasonication, Lei C., Green Chemistry, (Jun 2021), DOI:10.1039/D1GC01623G https://pubs.rsc.org/en/content/articlelanding/2021/gc/d1gc01623gdoi.org/10.1039/D1GC01623G
NEXTRODE – Electrode Manufacturing
The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., Journal of Chemical Education, (Jun 2020), DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282 (See also ReLiB and CATMAT)
Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates, Kazakli, M., Journal of Membrane Science, (Aug 2020), DOI:10.1016/j.memsci.2020.118640 https://www.sciencedirect.com/science/article/pii/S0376738820312163
4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes, Ziesche, R. F., Journal of Imaging, (Dec 2020), DOI:10.3390/jimaging6120136 https://www.mdpi.com/2313-433X/6/12/136 (See also Characterisation)
Multi-Layered Composite Electrodes of High Power Li4Ti5O12 and High Capacity SnO2 for Smart Lithium Ion Storage, Ho Lee, S., Energy Storage Materials, (Feb 2021), DOI:10.1016/j.ensm.2021.02.010 https://www.sciencedirect.com/science/article/abs/pii/S2405829721000532
A review of metrology in Li-ion electrode coating processes, Reynolds C.D., Materials & Design, (Jul 2021), DOI:10.1016/j.matdes.2021.109971 https://www.sciencedirect.com/science/article/pii/S0264127521005256?via%3Dihub
CATMAT – Next Generation Lithium-ion Cathode Materials
The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., Journal of Chemical Education, (Jun 2020), DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282 (See also ReLiB and NEXTRODE)
The role of Ni and Co in supressing O-loss in Li-rich layerd cathodes, Boivin E., Advanced Functional Materials, (Aug 2020), DOI:10.1002/adfm.202003660 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202003660 (See also SOLBAT)
First-cycle voltage hysteresis in Li-rich 3 d cathodes associated with molecular O2 trapped in the bulk, House, R. A., Nature Energy, (Sep 2020), DOI:10.1038/s41560-020-00697-2 https://www.nature.com/articles/s41560-020-00697-2 (See also SOLBAT)
Redox Chemistry and the Role of Trapped Molecular O2 in Li-Rich Disordered Rocksalt Oxyfluoride Cathodes, Sharpe, R., Journal of the American Chemical Society, (Dec 2020), DOI:10.1021/jacs.0c10270 https://pubs.acs.org/doi/abs/10.1021/jacs.0c10270
The role of O2 in O-redox cathodes for Li-ion batteries, House R.A., Nature Energy, (Mar 2021), DOI:10.1038/s41560-021-00780-2 https://www.nature.com/articles/s41560-021-00780-2
Reduced variance analysis of molecular dynamics simulations by linear combination of estimators, Coles, S. W., The Journal of Chemical Physics, (May 2021), DOI:10.1063/5.0053737 https://aip.scitation.org/doi/10.1063/5.0053737
Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes, House R.A., Nature Communications, (May 2021), DOI:10.1038/s41467-021-23154-4 https://www.nature.com/articles/s41467-021-23154-4 (See also SOLBAT)
FutureCat – Next-generation Li-ion cathode materials
Evaluating lithium diffusion mechanism in the complex spinel Li2NiGe3O8, Martin D.Z.C., Physical Chemistry Chemical Physics, (Oct 2019), DOI:10.1039/C9CP02907A https://pubs.rsc.org/en/content/articlelanding/2019/CP/C9CP02907A
Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials, McClelland, I., Annual Review of Materials Research, (May 2020), DOI:10.1146/annurev-matsci-110519-110507 https://www.annualreviews.org/doi/full/10.1146/annurev-matsci-110519-110507
Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries, Davies, D. W., IOP SciNotes, (Jul 2020), DOI:10.1088/2633-1357/ab9750 https://iopscience.iop.org/article/10.1088/2633-1357/ab9750 (See also Multi-scale Modelling)
Revisiting metal fluorides as lithium-ion battery cathodes, Hua, X., Nature Materials, (Jan 2021), DOI:10.1038/s41563-020-00893-1 https://www.nature.com/articles/s41563-020-00893-1
Non-equilibrium metal oxides via reconversion chemistry in lithium-ion batteries, Hua, X., Nature Communications, (Jan 2021), DOI:10.1038/s41467-020-20736-6 https://www.nature.com/articles/s41467-020-20736-6
In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation, McClelland, I., ACS Applied Energy Materials, (Jan 2021), DOI:10.1021/acsaem.0c02722 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c02722 (See also SOLBAT)
Ab initio random structure searching for battery cathode materials, Lu, Z., The Journal of Chemical Physics, (May 2021), DOI:10.1063/5.0049309 https://aip.scitation.org/doi/10.1063/5.0049309
Insights Into the Electric Double-Layer Capacitance of Two-Dimensional Electrically Conductive Metal-Organic Frameworks, Gittins, J. W., Journal of Materials Chemistry A, (Jun 2021), DOI:10.1039/D1TA04026J
https://pubs.rsc.org/en/content/articlelanding/2021/TA/D1TA04026J
Perspectives for next generation lithium-ion battery cathode materials, Booth S.G., APL Materials, (Oct 2021), DOI:10.1063/5.0051092 https://aip.scitation.org/doi/pdf/10.1063/5.0051092 (See also Degradation)
Beyond Lithium Ion
SOLBAT: Solid-state metal anode batteries
Selective and Facile Synthesis of Sodium Sulfide and Sodium Disulfide Polymorphs, El-Shinawi, H., Inorganic Chemistry, (Jun 2018), DOI:10.1021/acs.inorgchem.8b00776 https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b00776
Na1.5La1.5TeO6: Na+ conduction in a novel Na-rich double perovskite, Amores,M. , Chemical Communications, (Aug 2018), DOI:10.1039/C8CC03367F https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc03367f
Lithium Transport in Li4.4M0.4M′0.6S4 (M = Al3+, Ga3+, and M′ = Ge4+, Sn4+): Combined Crystallographic, Conductivity, Solid State NMR, and Computational Studies, Leube, B. T. , Chemistry of Materials, (Sep 2018), DOI:10.1021/acs.chemmater.8b03175 https://pubs.acs.org/doi/10.1021/acs.chemmater.8b03175
Low-Dose Aberration-Free Imaging of Li-Rich Cathode Materials at Various States of Charge Using Electron PtychographyJuan, Lozano, G., Nano Letters, (Sep 2018), DOI:10.1021/acs.nanolett.8b02718
7Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries, Marbella, L. E. , Chemistry of Materials, (Apr 2019), DOI:10.1021/acs.chemmater.8b04875 https://pubs.acs.org/doi/full/10.1021/acs.chemmater.8b04875
What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?, House, R. A., Chemistry of Materials, (Apr 2019), DOI:10.1021/acs.chemmater.9b00227 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00227
Nature of the “Z”-phase in Layered Na-ion Battery Cathodes, Somerville, J. W., Energy & Environmental Sciences, (May 2019), DOI:10.1039/C8EE02991A https://pubs.rsc.org/en/content/articlelanding/2019/EE/C8EE02991A
Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries, Cowan, A., Annual Review of Analytical Chemistry, (Jun 2019), DOI:10.1146/annurev-anchem-061318-115303 https://www.annualreviews.org/doi/abs/10.1146/annurev-anchem-061318-115303
Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells, Kasemchainan, J., Nature Materials, (Jul 2019), DOI:10.1038/s41563-019-0438-9 https://www.nature.com/articles/s41563-019-0438-9
Co-spray printing of LiFePO4 and PEO-Li1.5Al0.5Ge1.5(PO4)3 hybrid electrodes for all-solid-state Li-ion battery applications, Bu, J., Journal of Materials Chemistry A, (Aug 2019), DOI:10.1039/C9TA03824H https://pubs.rsc.org/en/content/articlelanding/2019/TA/C9TA03824H
Dental Resin Monomer Enables Unique NbO2/Carbon Lithium‐Ion Battery Negative Electrode with Exceptional Performance, Ji, Q., Advanced Functional Materials, (Aug 2019), DOI:10.1002/adfm.201904961 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201904961
Dendrite nucleation in lithium-conductive ceramics, Li, G., Physical Chemistry Chemical Physics, (Sep 2019), DOI:10.1039/C9CP03884A https://pubs.rsc.org/en/content/articlehtml/2019/cp/c9cp03884a
Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes, Naylor, A. J., Journal of Materials Chemistry A, (Sep 2019), DOI:10.1039/C9TA09019C https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta09019c
A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li–S batteries, El-Shinawi, H., Nanoscale, (Oct 2019), DOI:10.1039/C9NR06239D https://pubs.rsc.org/lv/content/articlehtml/2019/nr/c9nr06239d
A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals, Al-Masri, D., Journal of Materials Chemistry A, (Oct 2019), DOI:10.1039/C9TA11175A https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta11175a
The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte, Liu, J., Joule, (Oct 2019), DOI:10.1016/j.joule.2019.10.001 https://www.sciencedirect.com/science/article/pii/S2542435119304830
Is Nitrogen Present in Li3N·P2S5 Solid Electrolytes Produced by Ball Milling?, Hartley, G. O., Chemistry of Materials, (Nov 2019), DOI:10.1021/acs.chemmater.9b01853 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b01853
Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes, House, R. A., Nature, (Dec 2019), DOI:10.1038/s41586-019-1854-3 https://www.nature.com/articles/s41586-019-1854-3
Sodium/Na β″ Alumina Interface: Effect of Pressure on Voids, Jolly, D. S., ACS Applied Materials & Interfaces, (Dec 2019), DOI:10.1021/acsami.9b17786 https://pubs.acs.org/doi/abs/10.1021/acsami.9b17786
Mechanics of the Ideal Double-Layer Capacitor, Monroe, C. W., Journal of The Electrochemical Society, (Feb 2020), DOI:10.1149/1945-7111/ab6b04 https://iopscience.iop.org/article/10.1149/1945-7111/ab6b04 (See also Multi-scale Modelling)
Dendrites as climbing dislocations in ceramic electrolytes: Initiation of growth, Shishvan, S. S., Journal of Power Sources, (Mar 2020), DOI:10.1016/j.jpowsour.2020.227989 https://www.sciencedirect.com/science/article/abs/pii/S0378775320302925
Multiscale Lithium-Battery Modeling from Materials to Cells, Li, G., Annual Review of Chemical and Biomolecular Engineering, (Mar 2020), DOI:10.1146/annurev-chembioeng-012120-083016 https://www.annualreviews.org/doi/pdf/10.1146/annurev-chembioeng-012120-083016 (See also Multi-scale Modelling)
Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization, Chemical Science, (May 2020), DOI:10.1039/D0SC00463D https://pubs.rsc.org/en/content/articlehtml/2020/sc/d0sc00463d
Fabrication of Li1+xAlxGe2-x(PO4)3 thin films by sputtering for solid electrolytes, Mousavi, T., Solid State Ionics, (Jul 2020), DOI:10.1016/j.ssi.2020.115397 https://www.sciencedirect.com/science/article/abs/pii/S0167273820304513
2020 roadmap on solid-state batteries, Pasta, M., Journal of Physics: Energy, (Aug 2020), DOI:10.1088/2515-7655/ab95f4 https://iopscience.iop.org/article/10.1088/2515-7655/ab95f4
The role of Ni and Co in supressing O-loss in Li-rich layerd cathodes, Boivin E., Advanced Functional Materials, (Aug 2020), DOI:10.1002/adfm.202003660 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202003660 (See also CATMAT)
Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with Tunable Pore size and, Zuo, X., Applied Materials and Interfaces, (Sep 2020), DOI:10.1021/acsami.0c12747 https://pubs.acs.org/doi/abs/10.1021/acsami.0c12747
First-cycle voltage hysteresis in Li-rich 3 d cathodes associated with molecular O 2 trapped in the bulk, House, R. A., Nature Energy, (Sep 2020), DOI:10.1038/s41560-020-00697-2 https://www.nature.com/articles/s41560-020-00697-2 (See also CATMAT)
Imaging Sodium Dendrite Growth in All‐Solid‐State Sodium Batteries using 23Na T2‐weighted MRI, Rees, G. J., Angewandte Chemie International Edition, (Oct 2020), DOI:10.1002/anie.202013066 https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202013066
Electrochemo-Mechanical Properties of Red Phosphorus Anodes in Lithium, Sodium, and Potassium Ion Batteries, Capone, I., Matter, (Oct 2020), DOI:10.1016/j.matt.2020.09.017 https://www.sciencedirect.com/science/article/pii/S2590238520305154
Computationally Guided Discovery of the Sulfide Li3AlS3 in the Li–Al–S Phase Field: Structure and Lithium Conductivity, Gamon, J., Chemistry of Materials, (Oct 2020), DOI:10.1021/acs.chemmater.9b03230 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b03230
3D Imaging of Lithium Protrusions in Solid‐State Lithium Batteries using X‐Ray Computed Tomography, Hao, S., Advanced Functional Materials, (Dec 2020), DOI:10.1002/adfm.202007564 https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007564
Li1.5La1.5MO6 (M= W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries, Amores, M., Nature Communications, (Dec 2020), DOI:10.1038/s41467-020-19815-5 https://www.nature.com/articles/s41467-020-19815-5
Tracking Lithium Penetration in Solid Electrolyte in 3D by In-situ Synchrotron X-ray Computed Tomography, Hao, S., Nano Energy, (Jan 2021), DOI:10.1016/j.nanoen.2021.105744 https://www.sciencedirect.com/science/article/abs/pii/S2211285521000033
The initiation of void growth during stripping of Li electrodes in solid electrolyte cells, Shishvan, S. S., Journal of Power Sources, (Jan 2021), DOI:10.1016/j.jpowsour.2020.229437 https://www.sciencedirect.com/science/article/abs/pii/S0378775320317201
In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation, McClelland, I., ACS Applied Energy Materials, (Jan 2021), DOI:10.1021/acsaem.0c02722 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c02722 (See also FutureCat)
Ordered LiNi0.5Mn1.5O4 Cathode in Bis (fluorosulfonyl) imide-Based Ionic Liquid Electrolyte: Importance of the Cathode-Electrolyte Interphase, Lee, H. J., Chemistry of Materials, (Feb 2021), DOI:10.1021/acs.chemmater.0c04014 https://pubs.acs.org/doi/10.1021/acs.chemmater.0c04014
Li6SiO4Cl2: A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking, Morscher, A., Chemistry of Materials, (Mar 2021), DOI:10.1021/acs.chemmater.1c00157 https://pubs.acs.org/doi/full/10.1021/acs.chemmater.1c00157
Development of sputtered nitrogen-doped Li1+xAlxGe2-x (PO4) 3 thin films for solid state batteries, Mousavi, T., Solid State Ionics, (Apr 2021), DOI:10.1016/j.ssi.2021.115613 https://www.sciencedirect.com/science/article/abs/pii/S0167273821000667
An assessment of a mechanism for void growth in Li anodes, Roy, U., Extreme Mechanics Letters, (Apr 2021), DOI:10.1016/j.eml.2021.101307 https://www.sciencedirect.com/science/article/abs/pii/S235243162100078X
Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes, House R.A., Nature Communications, (May 2021), DOI:10.1038/s41467-021-23154-4 https://www.nature.com/articles/s41467-021-23154-4 (See also CATMAT)
NEXGENNA – Sodium-ion Batteries
Advances in Organic Anode Materials for Na‐/K‐Ion Rechargeable Batteries, Desai, A. V., ChemSusChem, (Jul 2020), DOI:10.1002/cssc.202001334 https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.202001334
Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., ACS Applied Energy Materials, (Aug 2020), DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also Multi-scale Modelling and Degradation)
Surface engineering strategy using urea to improve the rate performance of Na2Ti3O7 in Na‐ion batteries, Costa S. I. R., Chemistry - A European Journal (Aug 2020) DOI:10.1002/chem.202003129 https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.202003129
Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0. 67Mg0.2Mn0.8O2, Kim, E. J., ACS Applied Energy Materials, (Sep 2020), DOI:10.1021/acsaem.0c01352 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c01352
Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies, Kim, E. J., Journal of Power Sources, (Oct 2020), DOI:10.1016/j.jpowsour.2020.229010 https://www.sciencedirect.com/science/article/pii/S0378775320313070
Extending the Performance Limit of Anodes: Insights from Diffusion Kinetics of Alloying Anodes, Choi, Y., Advanced Energy Materials, (Dec 2020), DOI:10.1002/aenm.202003078 https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202003078
2021 roadmap for sodium-ion batteries, Tapia-Ruiz N., Journal of Physics: Energy, (Jul 2021), DOI:10.1088/2515-7655/ac01ef https://iopscience.iop.org/article/10.1088/2515-7655/ac01ef
New route to battery grade NaPF6 for Na-ion batteries: expanding the accessible concentration, Ould D.M.C., Angewandte Chemie, (Sep 2021), DOI:10.1002/anie.202111215 https://onlinelibrary.wiley.com/doi/10.1002/anie.202111215
LiSTAR – The Lithium-Sulfur Technology Accelerator
A Highly Sensitive Electrochemical Sensor of Polysulfides in Polymer Lithium-Sulfur Batteries, Meddings, N., Journal of The Electrochemical Society, (May 2020), DOI:10.1149/1945-7111/ab8ce9 https://iopscience.iop.org/article/10.1149/1945-7111/ab8ce9
Toward Practical Demonstration of High-Energy-Density Batteries, Shearing, P. R., Joule, (Jul 2020), DOI:10.1016/j.joule.2020.06.019 https://www.sciencedirect.com/science/article/abs/pii/S2542435120302828
The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery, Di Lecce, D., Journal of Power Sources, (Jul 2020), DOI:10.1016/j.jpowsour.2020.228424 https://www.sciencedirect.com/science/article/abs/pii/S037877532030728X
Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties, Zhang, Z., ACS Applied Materials & Interfaces, (Jul 2020), DOI:10.1021/acsami.0c11190 https://pubs.acs.org/doi/abs/10.1021/acsami.0c11190 (See also Degradation)
Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements, Robinson, J., Journal of The Electrochemical Society, (Aug 2020), DOI:10.1149/1945-7111/abb174 https://iopscience.iop.org/article/10.1149/1945-7111/abb174 (See also Multi-scale Modelling)
4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of The Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abbfd9 https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9 (See also Characterisation and Multi-scale Modelling)
Using In-Situ Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries Characterization: A Review on Recent Developments, Llewellyn, A.V., Condensed Matter, (Nov 2020), DOI:10.3390/condmat5040075 https://www.mdpi.com/2410-3896/5/4/75 (See also Characterisation and Degradation)
Molecular modeling of electrolyte and polysulfide ions for lithium-sulfur batteries, Babar, S., Ionics, (Dec 2020), DOI:10.1007/s11581-020-03860-7 https://link.springer.com/article/10.1007/s11581-020-03860-7
2021 Roadmap on Lithium Sulfur Batteries, Robinson, J., Journal of Physics: Energy, (Jan 2021), DOI:10.1088/2515-7655/abdb9a https://iopscience.iop.org/article/10.1088/2515-7655/abdb9a
Evaluation and Realization of Safer Mg-S Battery: the Decisive Role of the Electrolyte, Sheng, L., Nano Energy, (Jan 2021), DOI:10.1016/j.nanoen.2021.105832 https://www.sciencedirect.com/science/article/abs/pii/S2211285521000902
A Multiscale X‐Ray Tomography Study of the Cycled‐Induced Degradation in Magnesium–Sulfur Batteries, Du, W., Small Methods, (Mar 2021), DOI:10.1002/smtd.202001193 https://onlinelibrary.wiley.com/doi/full/10.1002/smtd.202001193
Battery Characterisation
Imaging Dynamic Electrochemical Interfaces
Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications, Bentley, C. L., Analytical Chemistry, (Jun 2020), DOI:10.1021/acs.analchem.0c01540 https://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c01540
Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy, Shkirskiy, V., Analytical Chemistry, (Aug 2020), DOI:10.1021/acs.analchem.0c02358 https://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c02358
4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of The Electrochemical Society, (Oct 2020), DOI:10.1149/1945-7111/abbfd9 https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9 (See also LiSTAR and Multi-scale Modelling)
Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale, (Oct 2020), DOI:10.1039/D0NR04589F https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also ReLiB and Degradation)
Using In-Situ Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries Characterization: A Review on Recent Developments, Llewellyn, A.V., Condensed Matter, (Nov 2020), DOI:10.3390/condmat5040075 https://www.mdpi.com/2410-3896/5/4/75 (See also LiSTAR and Degradation)
4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes, Ziesche, R. F., Journal of Imaging, (Dec 2020), DOI:10.3390/jimaging6120136 https://www.mdpi.com/2313-433X/6/12/136 (See also NEXTRODE)
Operando Bragg Coherent Diffraction Imaging of LiNi0.8Mn0.1Co0.1O2 Primary Particles within Commercially Printed NMC811 Electrode Sheets, Estandarte, A. K. C., ACS Nano, (Dec 2020), DOI:10.1021/acsnano.0c08575 https://pubs.acs.org/doi/abs/10.1021/acsnano.0c08575 (See also Degradation)
Controlling Radiolysis Chemistry on the Nanoscale in Liquid Cell Scanning Transmission Electron Microscopy, Lee, J., Physical Chemistry Chemical Physics, (Mar 2021), DOI:10.1039/D0CP06369J https://pubs.rsc.org/en/content/articlehtml/2021/cp/d0cp06369j (See also ReLiB)
What Lies Beneath? Probing Buried Interfaces in Working Batteries
The Origin of Chemical Inhomogeneity in Garnet Electrolytes and its Impact on the Electrochemical Performance, Brugge, R., Journal of Materials Chemistry A, (Jul 2020), DOI:10.1039/D0TA04974C https://pubs.rsc.org/en/content/articlehtml/2020/ta/d0ta04974c
Comments are closed.