Scientific Publications
Research from the Faraday Institution’s programme is internationally recognised as a mark of excellence. Scientific discoveries have led to highly cited publications, a suite of patents, and commercial spin outs. Since its inception, the Faraday Institution has contributed over 642 publications to the scientific literature, more than 50 of which represent collaborative work across Faraday Institution research projects.
The following statistical data derives from the SciVal record from April 2018 through November 2022, which recognises 640+ papers and 1865 authors. 85.1% of publications are in Open Access journals. Almost half of the published research coming out of the Faraday Institution has international collaborators, spanning over 343 institutions, 35 countries and 6 continents. Key countries that collaborate most frequently with the Faraday Institution include the USA, China, Germany, France, Sweden, South Korea and Spain in that order.
Faraday Institution publications are of measurably high quality. 92.8% appear in the top quartile journals, with 63.6% in the top 10% of journals. Notably, 43.9% fall into the top 10% most cited publications worldwide, which serves to raise the UK average Field-Weighted Citation Impact (FWCI) in the research domains in which the Faraday Institution operates (chemistry, materials science, energy, physics, chemical engineering, engineering, environmental science). Faraday Institution publications have 10421 overall citations, with 17.7 citations per publication on average. In the UK, research in 2022 carries a FWCI of 1.56. Faraday Institution research is on target to be ahead of this with a FWCI of 2.25.
Technology Roadmaps
The following Faraday Institution technology roadmaps present an overview of the fundamental challenges impeding the commercial development of a range of energy storage technologies, the necessary advances to understand the underlying science, and the multidisciplinary approach being taken by our researchers in facing these challenges. It is our hope that these roadmaps will guide academia, industry, and funding agencies towards the further development of such batteries in the future.
Publications
A full list of publications to November 2022 can be found here.
Lithium Ion
Battery Degradation
Structure-property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes; Laveda, J.V.; Johnston, B.; Paterson, G.W.; Baker, P.J.; Tucker, M.G.; Playford, H.Y.; Jensen, K.M.O.; Billinge, S.J.L.; Corr, S.A.; Journal of Materials Chemistry A (Dec 2017); https://doi.org/10.1039/c7ta04400c
In-Situ Electrochemical SHINERS Investigation of SEI Composition on Carbon-Coated Zn0.9Fe0.1O Anode for Lithium-Ion Batteries; Cabo-Fernandez, L.; Bresser, D.; Braga, F.; Passerini, S.; Hardwick, L.J.; Batteries and Supercaps (Sept 2018); https://doi.org/10.1002/batt.201800063
Evolution of electrochemical cell designs for in-situ and operando 3D characterization; Tan, C.; Daemi, S.R.; Taiwo, O.O.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R.; Materials (Nov 2018); https://doi.org/10.3390/ma11112157
Partially Neutralized Polyacrylic Acid/Poly(vinyl alcohol) Blends as Effective Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries; Huang, Q.; Wan, C.; Loveridge, M.; Bhagat, R.; ACS Applied Energy Materials (Nov 2018); https://doi.org/10.1021/acsaem.8b01277
4D visualisation of: In situ nano-compression of Li-ion cathode materials to mimic early stage calendering; Daemi, S.R.; Lu, X.; Sykes, D.; Behnsen, J.; Tan, C.; Palacios-Padros, A.; Cookson, J.; Petrucco, E.; Withers, P.J.; Brett, D.J.L.; Shearing, P.R.; Materials Horizons (Dec 2018); https://doi.org/10.1039/c8mh01533c (See also MSM)
Three-dimensional pulsed field gradient NMR measurements of self-diffusion in anisotropic materials for energy storage applications; Engelke, S.; Marbella, L.E.; Trease, N.M.; De Volder, M.; Grey, C.P.; Physical Chemistry Chemical Physics (Jan 2019); https://doi.org/10.1039/c8cp07776b
Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells; Finegan, D.P.; Darst, J.; Walker, W.; Li, Q.; Yang, C.; Jervis, R.; Heenan, T.M.M.; Hack, J.; Thomas, J.C.; Rack, A.; Brett, D.J.L.; Shearing, P.R.; Keyser, M.; Darcy, E.; Journal of Power Sources (March 2019); https://doi.org/10.1016/j.jpowsour.2019.01.077
Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes during Electrochemical Cycling; Märker, K.; Reeves, P.J.; Xu, C.; Griffith, K.J.; Grey, C.P.; Chemistry of Materials (March 2019); https://doi.org/10.1021/acs.chemmater.9b00140
Temperature Considerations for Charging Li-Ion Batteries: Inductive versus Mains Charging Modes for Portable Electronic Devices; Loveridge, M.J.; Tan, C.C.; Maddar, F.M.; Remy, G.; Abbott, M.; Dixon, S.; McMahon, R.; Curnick, O.; Ellis, M.; Lain, M.; Barai, A.; Amor-Segan, M.; Bhagat, R.; Greenwood, D.; ACS Energy Letters (April 2019); https://doi.org/10.1021/acsenergylett.9b00663
Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries; Cowan, A.J.; Hardwick, L.J.; Annual Review of Analytical Chemistry (April 2019); https://doi.org/10.1146/annurev-anchem-061318-115303 (See also SOLBAT)
Morphology-Directed Synthesis of LiFePO4 and LiCoPO4 from Nanostructured Li1+2 xPO3+ x; El-Shinawi, H.; Cussen, E.J.; Corr, S.A.; Inorganic Chemistry (May 2019); https://doi.org/10.1021/acs.inorgchem.9b00517
Porous Metal-Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-Ion Batteries; Malik, R.; Loveridge, M.J.; Williams, L.J.; Huang, Q.; West, G.; Shearing, P.R.; Bhagat, R.; Walton, R.I.; Chemistry of Materials (May 2019); https://doi.org/10.1021/acs.chemmater.9b00933
Spatially Resolving Lithiation in Silicon-Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography; Finegan, D.P.; Vamvakeros, A.; Cao, L.; Tan, C.; Heenan, T.M.M.; Daemi, S.R.; Jacques, S.D.M.; Beale, A.M.; Di Michiel, M.; Smith, K.; Brett, D.J.L.; Shearing, P.R.; Ban, C.; Nano Letters (May 2019); https://doi.org/10.1021/acs.nanolett.9b00955
Concentrated electrolytes for enhanced stability of Al-alloy negative electrodes in Li-ion batteries; Chan, A.K.; Tatara, R.; Feng, S.; Karayaylali, P.; Lopez, J.; Stephens, I.E.L.; Shao-Horn, Y.; Journal of the Electrochemical Society (June 2019); https://doi.org/10.1149/2.0581910jes
Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response; Wang, B.; Fielding, A.J.; Dryfe, R.A.W.; Journal of Physical Chemistry C (August 2019); https://doi.org/10.1021/acs.jpcc.9b04292
Virtual unrolling of spirally-wound lithium-ion cells for correlative degradation studies and predictive fault detection; Kok, M.D.R.; Robinson, J.B.; Weaving, J.S.; Jnawali, A.; Pham, M.; Iacoviello, F.; Brett, D.J.L.; Shearing, P.R.; Sustainable Energy and Fuels (August 2019); https://doi.org/10.1039/c9se00500e (See also MSM)
Kerr gated Raman spectroscopy of LiPF6 salt and LiPF6-based organic carbonate electrolyte for Li-ion batteries; Cabo-Fernandez, L.; Neale, A.R.; Braga, F.; Sazanovich, I.V.; Kostecki, R.; Hardwick, L.J.; Physical Chemistry Chemical Physics (Sept 2019); https://doi.org/10.1039/c9cp02430a
Representative resolution analysis for X-ray CT: A Solid oxide fuel cell case study; Heenan, T.M.M.; Tan, C.; Jervis, R.; Lu, X.; Brett, D.J.L.; Shearing, P.R.; Chemical Engineering Science: X (Nov 2019); https://doi.org/10.1016/j.cesx.2019.100043
Developments in X-ray tomography characterization for electrochemical devices; Heenan, T.M.M.; Tan, C.; Hack, J.; Brett, D.J.L.; Shearing, P.R.; Materials Today (Dec 2019); https://doi.org/10.1016/j.mattod.2019.05.019
Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes; Zou, J.; Li, F.; Bissett, M.A.; Kim, F.; Hardwick, L.J.; Electrochimica Acta (Jan 2020); https://doi.org/10.1016/j.electacta.2019.135284
Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes; Finegan, D.P.; Vamvakeros, A.; Tan, C.; Heenan, T.M.M.; Daemi, S.R.; Seitzman, N.; Di Michiel, M.; Jacques, S.; Beale, A.M.; Brett, D.J.L.; Shearing, P.R.; Smith, K.; Nature Communications (Jan 2020); https://doi.org/10.1038/s41467-020-14467-x
4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique; Ziesche, R.F.; Arlt, T.; Finegan, D.P.; Heenan, T.M.M.; Tengattini, A.; Baum, D.; Kardjilov, N.; Markötter, H.; Manke, I.; Kockelmann, W.; Brett, D.J.L.; Shearing, P.R.; Nature Communications (Feb 2020); https://doi.org/10.1038/s41467-019-13943-3
Rapid Preparation of Geometrically Optimal Battery Electrode Samples for Nano Scale X-ray Characterisation; Tan, C.; Daemi, S.; Heenan, T.; Iacoviello, F.; Leach, A.S.; Rasha, L.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (April 2020); https://doi.org/10.1149/1945-7111/ab80cd
Thermal Runaway of a Li-Ion Battery Studied by Combined ARC and Multi-Length Scale X-ray CT; Patel, D.; Robinson, J.B.; Ball, S.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (April 2020); https://doi.org/10.1149/1945-7111/ab7fb6
Emerging X-ray imaging technologies for energy materials; Cao, C.; Toney, M.F.; Sham, T.-K.; Harder, R.; Shearing, P.R.; Xiao, X.; Wang, J.; Materials Today (April 2020); https://doi.org/10.1016/j.mattod.2019.08.011 (See also SOLBAT)
In situ Electron paramagnetic resonance spectroelectrochemical study of graphene-based supercapacitors: Comparison between chemically reduced graphene oxide and nitrogen-doped reduced graphene oxide; Wang, B.; Likodimos, V.; Fielding, A.J.; Dryfe, R.A.W.; Carbon (April 2020); https://doi.org/10.1016/j.carbon.2019.12.045
Resolving Li-Ion Battery Electrode Particles Using Rapid Lab-Based X-Ray Nano-Computed Tomography for High-Throughput Quantification; Heenan, T.M.M.; Llewellyn, A.V.; Leach, A.S.; Kok, M.D.R.; Tan, C.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Advanced Science (April 2020); https://doi.org/10.1002/advs.202000362
Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning; Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A.; Nature Communications (April 2020); https://doi.org/10.1038/s41467-020-15235-7
3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling; Lu, X.; Bertei, A.; Finegan, D.P.; Tan, C.; Daemi, S.R.; Weaving, J.S.; O’Regan, K.B.; Heenan, T.M.M.; Hinds, G.; Kendrick, E.; Brett, D.J.L.; Shearing, P.R.; Nature Communications (April 2020); https://doi.org/10.1038/s41467-020-15811-x (See also MSM)
Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal; Hope, M.A.; Rinkel, B.L.D.; Gunnarsdóttir, A.B.; Märker, K.; Menkin, S.; Paul, S.; Sergeyev, I.V.; Grey, C.P.; Nature Communications (May 2020); https://doi.org/10.1038/s41467-020-16114-x
Quantitative Relationships between Pore Tortuosity, Pore Topology, and Solid Particle Morphology Using a Novel Discrete Particle Size Algorithm; Usseglio-Viretta, F.L.E.; Finegan, D.P.; Colclasure, A.; Heenan, T.M.M.; Abraham, D.; Shearing, P.; Smith, K.; Journal of the Electrochemical Society (June 2020); https://doi.org/10.1149/1945-7111/ab913b
Theoretical transmissions for X-ray computed tomography studies of lithium-ion battery cathodes; Heenan, T.M.M.; Tan, C.; Wade, A.J.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Materials and Design (June 2020); https://doi.org/10.1016/j.matdes.2020.108585
The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries; Driscoll, E.H.; Hayward, E.C.; Patchett, R.; Anderson, P.A.; Slater, P.R.; Journal of Chemical Education (June 2020); https://doi.org/10.1021/acs.jchemed.0c00282 (See also Catmat, Nextrode and ReLIB)
Exploring cycling induced crystallographic change in NMC with X-ray diffraction computed tomography; Daemi, S.R.; Tan, C.; Vamvakeros, A.; Heenan, T.M.M.; Finegan, D.P.; Di Michiel, M.; Beale, A.M.; Cookson, J.; Petrucco, E.; Weaving, J.S.; Jacques, S.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Physical Chemistry Chemical Physics (June 2020); https://doi.org/10.1039/d0cp01851a
Highly Sensitive Operando Pressure Measurements of Li-ion Battery Materials with a Simply Modified Swagelok Cell; Ryall, N.; Garcia-Araez, N.; Journal of the Electrochemical Society (July 2020); https://doi.org/10.1149/1945-7111/ab9e81
The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance; Brugge, R.H.; Pesci, F.M.; Cavallaro, A.; Sole, C.; Isaacs, M.A.; Kerherve, G.; Weatherup, R.S.; Aguadero, A.; Journal of Materials Chemistry A (July 2020); https://doi.org/10.1039/d0ta04974c
Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties; Zhang, Z.; Smith, K.; Jervis, R.; Shearing, P.R.; Miller, T.S.; Brett, D.J.L.; ACS Applied Materials and Interfaces (July 2020); https://doi.org/10.1021/acsami.0c11190
Electrolyte oxidation pathways in lithium-ion batteries; Rinkel, B.L.D.; Hall, D.S.; Temprano, I.; Grey, C.P.; Journal of the American Chemical Society (July 2020); https://doi.org/10.1021/jacs.0c06363
In-Situ Raman Spectroscopy of Reaction Products in Optofluidic Hollow-Core Fiber Microreactors; Gentleman, A.S.; Miele, E.; Lawson, T.; Kohler, P.; Kim, S.; Yousaf, S.; Garcia, D.A.; Lage, A.; Grey, C.P.; Baumberg, J.J.; Frosz, M.H.; Russell, P.S.J.; Reisner, E.; Euser, T.G.; 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020 – Proceedings (August 2020); https://doi.org/10.1364/CLEOPR.2020.C2H_2
Erratum: Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries usingin situNMR spectroscopy; Gunnarsdóttir, A.B.; Vema, S.; Menkin, S.; Marbella, L.E.; Grey, C.P.; Journal of Materials Chemistry A (August 2020); https://doi.org/10.1039/d0ta90183k
Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries; Xu, C.; Märker, K.; Lee, J.; Mahadevegowda, A.; Reeves, P.J.; Day, S.J.; Groh, M.F.; Emge, S.P.; Ducati, C.; Layla Mehdi, B.; Tang, C.C.; Grey, C.P.; Nature Materials (August 2020); https://doi.org/10.1038/s41563-020-0767-8
Correlative acoustic time-of-flight spectroscopy and X-ray imaging to investigate gas-induced delamination in lithium-ion pouch cells during thermal runaway; Pham, M.T.M.; Darst, J.J.; Finegan, D.P.; Robinson, J.B.; Heenan, T.M.M.; Kok, M.D.R.; Iacoviello, F.; Owen, R.; Walker, W.Q.; Magdysyuk, O.V.; Connolley, T.; Darcy, E.; Hinds, G.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Sept 2020); https://doi.org/10.1016/j.jpowsour.2020.228039
Operando NMR of NMC811/Graphite Lithium-Ion Batteries: Structure, Dynamics, and Lithium Metal Deposition; Märker, K.; Xu, C.; Grey, C.P.; Journal of the American Chemical Society (Sept 2020); https://doi.org/10.1021/jacs.0c06727
Ageing analysis and asymmetric stress considerations for small format cylindrical cells for wearable electronic devices; Tan, C.C.; Walker, M.; Remy, G.; Kourra, N.; Maddar, F.; Dixon, S.; Williams, M.; Loveridge, M.J.; Journal of Power Sources (Oct 2020); https://doi.org/10.1016/j.jpowsour.2020.228626
Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes; Heenan, T.M.M.; Jnawali, A.; Kok, M.; Tranter, T.G.; Tan, C.; Dimitrijevic, A.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Data in Brief (Oct 2020); https://doi.org/10.1016/j.dib.2020.106033
Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes; Nicholls, D.; Lee, J.; Amari, H.; Stevens, A.J.; Mehdi, B.L.; Browning, N.D.; Nanoscale (Oct 2020); https://doi.org/10.1039/d0nr04589f (See also ReLIB and Characterisation)
Synthesis of layered silicon-graphene hetero-structures by wet jet milling for high capacity anodes in Li-ion batteries; Malik, R.; Huang, Q.; Silvestri, L.; Liu, D.; Pellegrini, V.; Marasco, L.; Venezia, E.; Abouali, S.; Bonaccorso, F.; Lain, M.J.; Greenwood, D.; West, G.; Shearing, P.R.; Loveridge, M.J.; 2D Materials (Oct 2020); https://doi.org/10.1088/2053-1583/aba5ca
An advanced microstructural and electrochemical datasheet on 18650 li-ion batteries with nickel-rich NMC811 cathodes and graphite-silicon anodes; Heenan, T.M.M.; Jnawali, A.; Kok, M.D.R.; Tranter, T.G.; Tan, C.; Dimitrijevic, A.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Nov 2020); https://doi.org/10.1149/1945-7111/abc4c1
Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-Rich Li-Ion Batteries; Dose, W.M.; Xu, C.; Grey, C.P.; De Volder, M.F.L.; Cell Reports Physical Science (Nov 2020); https://doi.org/10.1016/j.xcrp.2020.100253
Prospects for lithium-ion batteries and beyond—a 2030 vision; Grey, C.P.; Hall, D.S.; Nature Communications (Dec 2020); https://doi.org/10.1038/s41467-020-19991-4
Sample Dependence of Magnetism in the Next-Generation Cathode Material LiNi0.8Mn0.1Co0.1O2; Mukherjee, P.; Paddison, J.A.M.; Xu, C.; Ruff, Z.; Wildes, A.R.; Keen, D.A.; Smith, R.I.; Grey, C.P.; Dutton, S.E.; Inorganic Chemistry (Dec 2020); https://doi.org/10.1021/acs.inorgchem.0c02899
Phase Behavior during Electrochemical Cycling of Ni-Rich Cathode Materials for Li-Ion Batteries; Xu, C.; Reeves, P.J.; Jacquet, Q.; Grey, C.P.; Advanced Energy Materials (Dec 2020); https://doi.org/10.1002/aenm.202003404
A dilatometric study of graphite electrodes during cycling with x-ray computed tomography; Michael, H.; Iacoviello, F.; Heenan, T.M.M.; Llewellyn, A.; Weaving, J.S.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Jan 2021); https://doi.org/10.1149/1945-7111/abd648
The effects of ambient storage conditions on the structural and electrochemical properties of NMC-811 cathodes for Li-ion batteries; Busà, C.; Belekoukia, M.; Loveridge, M.J.; Electrochimica Acta (Jan 2021); https://doi.org/10.1016/j.electacta.2020.137358
Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy; Lee, J.; Nicholls, D.; Browning, N.D.; Mehdi, B.L.; Physical Chemistry Chemical Physics (March 2021); https://doi.org/10.1039/d0cp06369j (See also ReLIB and Characterisation)
Operando Measurement of Layer Breathing Modes in Lithiated Graphite; Yadegari, H.; Koronfel, M.A.; Wang, K.; Thornton, D.B.; Stephens, I.E.L.; Molteni, C.; Haynes, P.D.; Ryan, M.P.; ACS Energy Letters (April 2021); https://doi.org/10.1021/acsenergylett.1c00494
Developments in Dilatometry for Characterisation of Electrochemical Devices; Michael, H.; Jervis, R.; Brett, D.J.L; Shearing, P.R.; Batteries and Supercaps (April 2021); https://doi.org/10.1002/batt.202100027 (See also LiSTAR)
Asphericity Can Cause Nonuniform Lithium Intercalation in Battery Active Particles; Mistry, A.; Heenan, T.; Smith, K.; Shearing, P.; Mukherjee, P.P.; ACS Energy Letters (May 2021); https://doi.org/10.1021/acsenergylett.2c00870 (See also SafeBatt)
Transition metal dissolution and degradation in nmc811-graphite electrochemical cells; Ruff, Z.; Xu, C.; Grey, C.P.; Journal of the Electrochemical Society (June 2021); https://doi.org/10.1149/1945-7111/ac0359
Is lithium the key for nitrogen electroreducti on?; Westhead, O.; Jervis, R.; Stephens, I.E.L.; Science (June 2021); https://doi.org/10.1126/science.abi8329
Dendrite suppression by anode polishing in zinc-ion batteries; Zhang, Z.; Said, S.; Smith, K.; Zhang, Y.S.; He, G.; Jervis, R.; Shearing, P.R.; Miller, T.S.; Brett, D.J.L.; Journal of Materials Chemistry A (June 2021); https://doi.org/10.1039/d1ta02682h (See also LiSTAR)
The Complex Role of Aluminium Contamination in Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries; Lee, J.; Amari, H.; Bahri, M.; Shen, Z.; Xu, C.; Ruff, Z.; Grey, C.P.; Ersen, O.; Aguadero, A.; Browning, N.D.; Mehdi, B.L.; Batteries and Supercaps (June 2021); https://doi.org/10.1002/batt.202100110 (See also ReLIB)
Degradation in lithium ion battery current collectors; Guo, L.; Thornton, D.B.; Koronfel, M.A.; Stephens, I.E.L.; Ryan, M.P.; JPhys Energy (July 2021); https://doi.org/10.1088/2515-7655/ac0c04
Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries; Menkin, S.; Okeefe, C.A.; Gunnarsdóttir, A.B.; Dey, S.; Pesci, F.M.; Shen, Z.; Aguadero, A.; Grey, C.P.; Journal of Physical Chemistry C (July 2021); https://doi.org/10.1021/acs.jpcc.1c03877
Characterizing Batteries by In Situ Electrochemical Atomic Force Microscopy: A Critical Review; Zhang, Z.; Said, S.; Smith, K.; Jervis, R.; Howard, C.A.; Shearing, P.R.; Brett, D.J.L.; Miller, T.S.; Advanced Energy Materials (Sept 2021); https://doi.org/10.1002/aenm.202101518 (See also LiSTAR)
3D X-Ray Characterization of Energy Storage and Conversion Devices; Tan, C.; Leach, A.; Heenan, T.M.M.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Advances in Sustainable Energy (Sept 2021); https://doi.org/10.1007/978-3-030-74406-9_18 (See also SOLBAT)
The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries; Dose, W.M.; Morzy, J.K.; Mahadevegowda, A.; Ducati, C.; Grey, C.P.; De Volder, M.F.L.; Journal of Materials Chemistry A (Oct 2021); https://doi.org/10.1039/d1ta06324c
Nanoscale state-of-charge heterogeneities within polycrystalline nickel-rich layered oxide cathode materials; Tan, C.; Leach, A.S.; Heenan, T.M.M.; Parks, H.; Jervis, R.; Weker, J.N.; Brett, D.J.L.; Shearing, P.R.; Cell Reports Physical Science (Dec 2021); https://doi.org/10.1016/j.xcrp.2021.100647 (See also SafeBatt and ReLIB)
Negating the Interfacial Resistance between Solid and Liquid Electrolytes for Next-Generation Lithium Batteries; Vivek, J.P.; Meddings, N.; Garcia-Araez, N.; ACS Applied Materials and Interfaces (Dec 2021); https://doi.org/10.1021/acsami.1c17247
A solution-processable near-infrared thermally activated delayed fluorescent dye with a fused aromatic acceptor and aggregation induced emission behavior; Congrave, D.G.; Drummond, B.H.; Gu, Q.; Montanaro, S.; Francis, H.; Riesgo-González, V.; Zeng, W.; Matthews, C.S.B.; Dowland, S.; Wright, I.A.; Grey, C.P.; Friend, R.H.; Bronstein, H.; Journal of Materials Chemistry C (Jan 2022); https://doi.org/10.1039/d1tc04753a
Spatially resolved operando synchrotron-based X-ray diffraction measurements of Ni-rich cathodes for Li-ion batteries; A.S. Leach, A.V. Llewellyn, C. Xu, C. Tan, T.M.M. Heenan, A. Dimitrijevic, K. Kleiner, C.P Grey, D.J.L. Brett, C.C. Tang, P.R. Shearing; R. Jervis; Frontiers in Chemical Engineering (Jan 2022); https://doi.org/10.3389/fceng.2021.794194 (See also SafeBatt)
In-situ X-ray tomographic imaging study of gas and structural evolution in a commercial Li-ion pouch cell; Du, W.; Owen, R.E.; Jnawali, A.; Neville, T.P.; Iacoviello, F.; Zhang, Z.; Liatard, S.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Feb 2022); https://doi.org/10.1016/j.jpowsour.2021.230818 (See also SafeBatt and LiSTAR)
Thermal Runaway of Li-Ion Cells: How Internal Dynamics, Mass Ejection, and Heat Vary with Cell Geometry and Abuse Type; Sharp, M.; Darst, J.J.; Hughes, P.; Billman, J.; Pham, M.; Petrushenko, D.; Heenan, T.M.M.; Jervis, R.; Owen, R.; Patel, D.; Wenjia, D.; Michael, H.; Rack, A.; Magdysyuk, O.V.; Connolley, T.; Brett, D.J.L.; Hinds, G.; Keyser, M.; Darcy, E.; Shearing, P.R.; Walker, W.; Finegan, D.P.; Journal of the Electrochemical Society (Feb 2022); https://doi.org/10.1149/1945-7111/ac4fef (See also SafeBatt)
Cycle-Induced Interfacial Degradation and Transition-Metal Cross-Over in LiNi0.8Mn0.1Co0.1O2-Graphite Cells; Björklund, E.; Xu, C.; Dose, W.M.; Sole, C.G.; Thakur, P.K.; Lee, T.-L.; De Volder, M.F.L.; Grey, C.P.; Weatherup, R.S.; Chemistry of Materials (Feb 2022); https://doi.org/10.1021/acs.chemmater.1c02722
Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries; Dose, W.M.; Temprano, I.; Allen, J.P.; Björklund, E.; O’Keefe, C.A.; Li, W.; Mehdi, B.L.; Weatherup, R.S.; De Volder, M.F.L.; Grey, C.P.; ACS Applied Materials and Interfaces (March 2022); https://doi.org/10.1021/acsami.1c22812
Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes; Miele, E.; Dose, W.M.; Manyakin, I.; Frosz, M.H.; Ruff, Z.; De Volder, M.F.L.; Grey, C.P.; Baumberg, J.J.; Euser, T.G.; Nature Communications (March 2022); https://doi.org/10.1038/s41467-022-29330-4
Effect of Lithiation upon the Shear Strength of NMC811 Single Crystals; Stallard, J.C.; Vema, S.; Hall, D.S.; Dennis, A.R.; Penrod, M.E.; Grey, C.P.; Deshpande, V.S.; Fleck, N.A.; Journal of the Electrochemical Society (April 2022); https://doi.org/10.1149/1945-7111/ac6244 (See also FutureCat)
Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling; Boyce, A.M.; Martínez-Pañeda, E.; Wade, A.; Zhang, Y.S.; Bailey, J.J.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (April 2022); https://doi.org/10.1016/j.jpowsour.2022.231119 (See also MSM, Nextrode and ReLIB)
Operando Ultrasonic Monitoring of Lithium-Ion Battery Temperature and Behaviour at Different Cycling Rates and under Drive Cycle Conditions; Owen, R.E.; Robinson, J.B.; Weaving, J.S.; Pham, M.T.M.; Tranter, T.G.; Neville, T.P.; Billson, D.; Braglia, M.; Stocker, R.; Tidblad, A.A.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (April 2022); https://doi.org/10.1149/1945-7111/ac6833 (See also MSM, SafeBatt, LiSTAR and ReLIB)
A greyscale erosion algorithm for tomography (GREAT) to rapidly detect battery particle defects; Wade, A.; Heenan, T.M.M.; Kok, M.; Tranter, T.; Leach, A.; Tan, C.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; npj Materials Degradation (May 2022); https://doi.org/10.1038/s41529-022-00255-z (See also MSM)
Dynamics of Solid-Electrolyte Interphase Formation on Silicon Electrodes Revealed by Combinatorial Electrochemical Screening; Martín-Yerga, D.; Milan, D.C.; Xu, X.; Fernández-Vidal, J.; Whalley, L.; Cowan, A.J.; Hardwick, L.J.; Unwin, P.R.; Angewandte Chemie – International Edition (June 2022); https://doi.org/10.1002/anie.202207184
Aerosol Jet Printing as a Versatile Sample Preparation Method for Operando Electrochemical TEM Microdevices; Morzy, J.K.; Sartor, A.; Dose, W.M.; Ou, C.; Kar-Narayan, S.; De Volder, M.F.L.; Ducati, C.; Advanced Materials Interfaces (June 2022); https://doi.org/10.1002/admi.202200530
Author Correction: Investigating the presence of adsorbed species on Pt steps at low potentials ; Rizo, R.; Fernández-Vidal, J.; Hardwick, L.J.; Attard, G.A.; Vidal-Iglesias, F.J.; Climent, V.; Herrero, E.; Feliu, J.M.; Nature Communications (June 2022); https://doi.org/10.1038/s41467-022-31404-2
Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries; Rinkel, B.L.D.; Vivek, J.P.; Garcia-Araez, N.; Grey, C.P.; Energy and Environmental Science (July 2022); https://doi.org/10.1039/d1ee04053g
Quantitative spatiotemporal mapping of thermal runaway propagation rates in lithium-ion cells using cross-correlated Gabor filtering; Radhakrishnan, A.N.P.; Buckwell, M.; Pham, M.; Finegan, D.P.; Rack, A.; Hinds, G.; Brett, D.J.L.; Shearing, P.R.; Energy and Environmental Science (July 2022); https://doi.org/10.1039/d1ee03430h (See also SafeBatt)
Long-Life and pH-Stable SnO2-Coated Au Nanoparticles for SHINERS; Fernández-Vidal, J.; Gómez-Marín, A.M.; Jones, L.A.H.; Yen, C.-H.; Veal, T.D.; Dhanak, V.R.; Hu, C.-C.; Hardwick, L.J.; Journal of Physical Chemistry C (July 2022); https://doi.org/10.1021/acs.jpcc.2c02432
Lithium Insertion into Graphitic Carbon Observed via Operando Kerr-Gated Raman Spectroscopy Enables High State of Charge Diagnostics; Neale, A.R.; Milan, D.C.; Braga, F.; Sazanovich, I.V.; Hardwick, L.J.; ACS Energy Letters (July 2022); https://doi.org/10.1021/acsenergylett.2c01120
Operando monitoring of single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anodes; Merryweather, A.J.; Jacquet, Q.; Emge, S.P.; Schnedermann, C.; Rao, A.; Grey, C.P.; Nature Materials (August 2022); https://doi.org/10.1038/s41563-022-01324-z
Correlative electrochemical acoustic time-of-flight spectroscopy and X-ray imaging to monitor the performance of single-crystal and polycrystalline NMC811/Gr lithium-ion batteries; Michael, H.; Owen, R.E.; Robinson, J.B.; Heenan, T.M.M.; Tan, C.; Wade, A.J.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Sept 2022); https://doi.org/10.1016/j.jpowsour.2022.231775 (See also LiSTAR)
Surface reduction in lithium- and manganese-rich layered cathodes for lithium ion batteries drives voltage decay; B.Wen, F.N. Sayed, W.M. Dose, J.K. Morzy, Y. Sonaf, S. Nagendranb, C. Ducatide, C.P. Grey, M.F.L. De Volder; Journal of Materials Chemistry A (Sept 2022); https://doi.org/10.1039/D2TA04876K (See also FutureCat and Catmat)
Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries; Dose, W.M.; Li, W.; Temprano, I.; O’Keefe, C.A.; Mehdi, B.L.; De Volder, M.F.L.; Grey, C.P.; ACS Energy Letters (Sept 2022); https://doi.org/10.1021/acsenergylett.2c01722
Giant mid-IR resonant coupling to molecular vibrations in sub-nm gaps of plasmonic multilayer metafilms; Arul, R.; Grys, D.-B.; Chikkaraddy, R.; Mueller, N.S.; Xomalis, A.; Miele, E.; Euser, T.G.; Baumberg, J.J.; Light: Science and Applications (Sept 2022); https://doi.org/10.1038/s41377-022-00943-0
Operando visualisation of kinetically-induced lithium heterogeneities in single-particle layered Ni-rich cathodes; Xu, C.; Merryweather, A.J.; Pandurangi, S.S.; Lun, Z.; Hall, D.S.; Deshpande, V.S.; Fleck, N.A.; Schnedermann, C.; Rao, A.; Grey, C.P.; Joule (Oct 2022); https://doi.org/10.1016/j.joule.2022.09.008
Multi-Scale Modelling
Quantifying structure dependent responses in Li-ion cells with excess Li spinel cathodes: Matching voltage and entropy profiles through mean field models; Schlueter, S.; Genieser, R.; Richards, D.; Hoster, H.E.; Mercer, M.P.; Physical Chemistry Chemical Physics (July 2018); https://doi.org/10.1039/c8cp02989j
Controlled hydroxy-fluorination reaction of anatase to promote Mg2+ mobility in rechargeable magnesium batteries; Ma, J.; Koketsu, T.; Morgan, B.J.; Legein, C.; Body, M.; Strasser, P.; Dambournet, D.; Chemical Communications (August 2018); https://doi.org/10.1039/c8cc04136a
Formation of the Solid Electrolyte Interphase at Constant Potentials: A Model Study on Highly Oriented Pyrolytic Graphite; Antonopoulos, B.K.; Maglia, F.; Schmidt-Stein, F.; Schmidt, J.P.; Hoster, H.E.; Batteries and Supercaps (Sept 2018); https://doi.org/10.1002/batt.201800029
Correlated Polyhedral Rotations in the Absence of Polarons during Electrochemical Insertion of Lithium in ReO3; Bashian, N.H.; Zhou, S.; Zuba, M.; Ganose, A.M.; Stiles, J.W.; Ee, A.; Ashby, D.S.; Scanlon, D.O.; Piper, L.F.J.; Dunn, B.; Melot, B.C.; ACS Energy Letters (Sept 2018); https://doi.org/10.1021/acsenergylett.8b01179
Modeling the effects of thermal gradients induced by tab and surface cooling on lithium ion cell performance; Zhao, Y.; Patel, Y.; Zhang, T.; Offer, G.J.; Journal of the Electrochemical Society (Oct 2018); https://doi.org/10.1149/2.0901813jes
Oxidation states and ionicity; Walsh, A.; Sokol, A.A.; Buckeridge, J.; Scanlon, D.O.; Catlow, C.R.A.; Nature Materials (Oct 2018); https://doi.org/10.1038/s41563-018-0165-7
Quick-start guide for first-principles modelling of semiconductor interfaces; Park, J.-S.; Jung, Y.-K.; Butler, K.T.; Walsh, A.; JPhys Energy (Nov 2018); https://doi.org/10.1088/2515-7655/aad928
4D visualisation of: In situ nano-compression of Li-ion cathode materials to mimic early stage calendering; Daemi, S.R.; Lu, X.; Sykes, D.; Behnsen, J.; Tan, C.; Palacios-Padros, A.; Cookson, J.; Petrucco, E.; Withers, P.J.; Brett, D.J.L.; Shearing, P.R.; Materials Horizons (Dec 2018); https://doi.org/10.1039/c8mh01533c (See also Degradation)
Impact of Anion Vacancies on the Local and Electronic Structures of Iron-Based Oxyfluoride Electrodes; Burbano, M.; Duttine, M.; Morgan, B.J.; Borkiewicz, O.J.; Chapman, K.W.; Wattiaux, A.; Demourgues, A.; Groult, H.; Salanne, M.; Dambournet, D.; Journal of Physical Chemistry Letters (Dec 2018); https://doi.org/10.1021/acs.jpclett.8b03503
Aligned Ionogel Electrolytes for High-Temperature Supercapacitors; Liu, X.; Taiwo, O.O.; Yin, C.; Ouyang, M.; Chowdhury, R.; Wang, B.; Wang, H.; Wu, B.; Brandon, N.P.; Wang, Q.; Cooper, S.J.; Advanced Science (Jan 2019); https://doi.org/10.1002/advs.201801337
pyscses: a PYthon Space-Charge Site-Explicit Solver; Wellock, G.; Morgan, B.; Journal of Open Source Software (March 2019); https://doi.org/10.21105/joss.01209
Incorporating dendrite growth into continuum models of electrolytes: Insights from NMR measurements and inverse modeling; Sethurajan, A.K.; Foster, J.M.; Richardson, G.; Krachkovskiy, S.A.; David Bazak, J.; Goward, G.R.; Protas, B.; Journal of the Electrochemical Society (May 2019); https://doi.org/10.1149/2.0921908jes
crystal-torture: A crystal tortuosity module; O’Rourke, C.; Morgan, B. ; Journal of Open Source Software (June 2019); https://doi.org/10.21105/joss.01306
Faster lead-acid battery simulations from porous-electrode theory: Part I. Physical model; Sulzer, V.; Chapman, S.J.; Please, C.P.; Howey, D.A.; Monroe, C.W.; Journal of the Electrochemical Society (July 2019); https://doi.org/10.1149/2.0301910jes
Faster lead-acid battery simulations from porous-electrode theory: Part II. Asymptotic analysis; Sulzer, V.; Chapman, S.J.; Please, C.P.; Howey, D.A.; Monroe, C.W.; Journal of the Electrochemical Society (July 2019); https://doi.org/10.1149/2.0441908jes
The cell cooling coefficient: A standard to define heat rejection from lithium-ion batteries; Hales, A.; Diaz, L.B.; Marzook, M.W.; Zhao, Y.; Patel, Y.; Offer, G.; Journal of the Electrochemical Society (July 2019); https://doi.org/10.1149/2.0191912jes
Communication—why high-precision coulometry and lithium plating studies on commercial lithium-ion cells require thermal baths; Zülke, A.; Li, Y.; Keil, P.; Hoster, H.; Journal of the Electrochemical Society (August 2019); https://doi.org/10.1149/2.0841913jes
How to cool lithium ion batteries: Optimising Cell Design using a Thermally Coupled Model; Zhao, Y.; Diaz, L.B.; Patel, Y.; Zhang, T.; Offer, G.J.; Journal of the Electrochemical Society (August 2019); https://doi.org/10.1149/2.0501913jes
Virtual unrolling of spirally-wound lithium-ion cells for correlative degradation studies and predictive fault detection; Kok, M.D.R.; Robinson, J.B.; Weaving, J.S.; Jnawali, A.; Pham, M.; Iacoviello, F.; Brett, D.J.L.; Shearing, P.R.; Sustainable Energy and Fuels (August 2019); https://doi.org/10.1039/c9se00500e (See also Degradation)
Lithium-ion battery fast charging: A review; Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; Li, Y.; Zheng, S.; Vetterlein, S.; Gao, M.; Du, J.; Parkes, M.; Ouyang, M.; Marinescu, M.; Offer, G.; Wu, B.; eTransportation (August 2019); https://doi.org/10.1016/j.etran.2019.100011
The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs; Liu, X.; Ai, W.; Naylor Marlow, M.; Patel, Y.; Wu, B.; Applied Energy (August 2019); https://doi.org/10.1016/j.apenergy.2019.04.108
Highly Anisotropic Thermal Transport in LiCoO2; Yang, H.; Yang, J.-Y.; Savory, C.N.; Skelton, J.M.; Morgan, B.J.; Scanlon, D.O.; Walsh, A.; Journal of Physical Chemistry Letters (Sept 2019); https://doi.org/10.1021/acs.jpclett.9b02073
Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review; Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E.; Renewable and Sustainable Energy Reviews (Oct 2019); https://doi.org/10.1016/j.rser.2019.109254
Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells; Ai, W.; Kraft, L.; Sturm, J.; Jossen, A.; Wu, B.; Journal of the Electrochemical Society (Oct 2019); https://doi.org/10.1149/2.0122001JES
An asymptotic derivation of a single particle model with electrolyte; Marquis, S.G.; Sulzer, V.; Timms, R.; Please, C.P.; Jon Chapman, S.; Journal of the Electrochemical Society (Nov 2019); https://doi.org/10.1149/2.0341915jes
Battery Safety: Data-Driven Prediction of Failure; Finegan, D.P.; Cooper, S.J.; Joule (Nov 2019); https://doi.org/10.1016/j.joule.2019.10.013
Transitions of lithium occupation in graphite: A physically informed model in the dilute lithium occupation limit supported by electrochemical and thermodynamic measurements; Mercer, M.P.; Otero, M.; Ferrer-Huerta, M.; Sigal, A.; Barraco, D.E.; Hoster, H.E.; Leiva, E.P.M.; Electrochimica Acta (Nov 2019); https://doi.org/10.1016/j.electacta.2019.134774
Multi-scale electrolyte transport simulations for lithium ion batteries; Hanke, F.; Modrow, N.; Akkermans, R.L.C.; Korotkin, I.; Mocanu, F.C.; Neufeld, V.A.; Veit, M.; Journal of the Electrochemical Society (Nov 2019); https://doi.org/10.1149/2.0222001JES
Smart and Hybrid Balancing System: Design, Modeling, and Experimental Demonstration; De Castro, R.; Pinto, C.; Varela Barreras, J.; Araujo, R.E.; Howey, D.A.; IEEE Transactions on Vehicular Technology (Dec 2019); https://doi.org/10.1109/TVT.2019.2929653
Effect of temperature on the kinetics of electrochemical insertion of li-ions into a graphite electrode studied by kinetic Monte Carlo; Gavilán-Arriazu, E.M.; Mercer, M.P.; Pinto, O.A.; Oviedo, O.A.; Barraco, D.E.; Hoster, H.E.; Leiva, E.P.M.; Journal of the Electrochemical Society (Dec 2019); https://doi.org/10.1149/2.0332001JES
Descriptors for Electron and Hole Charge Carriers in Metal Oxides; Davies, D.W.; Savory, C.N.; Frost, J.M.; Scanlon, D.O.; Morgan, B.J.; Walsh, A.; Journal of Physical Chemistry Letters (Dec 2019); https://doi.org/10.1021/acs.jpclett.9b03398
Native Defects and Their Doping Response in the Lithium Solid Electrolyte Li7La3Zr2O12; Squires, A.G.; Scanlon, D.O.; Morgan, B.J.; Chemistry of Materials (Dec 2019); https://doi.org/10.1021/acs.chemmater.9b04319
The Surface Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium Ion Battery Pouch Cells; Hales, A.; Marzook, M.W.; Bravo Diaz, L.; Patel, Y.; Offer, G.; Journal of the Electrochemical Society (Jan 2020); https://doi.org/10.1149/1945-7111/ab6985
Mechanics of the Ideal Double-Layer Capacitor; Monroe, C.W.; Journal of the Electrochemical Society (Feb 2020); https://doi.org/10.1149/1945-7111/ab6b04 (See also SOLBAT)
Composition-dependent thermodynamic and mass-transport characterization of lithium hexafluorophosphate in propylene carbonate; Hou, T.; Monroe, C.W.; Electrochimica Acta (Feb 2020); https://doi.org/10.1016/j.electacta.2019.135085
A Python Package to Preprocess the Data Produced by Novonix High-Precision Battery-Testers; Gonzalez-Perez, V.; Keil, P.; Li, Y.; Zülke, A.; Burrel, R.; Csala, D.; Hoster, H.; Journal of Open Research Software (March 2020); https://doi.org/10.5334/jors.281
Exploiting cationic vacancies for increased energy densities in dual-ion batteries; Koketsu, T.; Ma, J.; Morgan, B.J.; Body, M.; Legein, C.; Goddard, P.; Borkiewicz, O.J.; Strasser, P.; Dambournet, D.; Energy Storage Materials (March 2020); https://doi.org/10.1016/j.ensm.2019.10.019
Parameterization of prismatic lithium–iron–phosphate cells through a streamlined thermal/electrochemical model; Chu, H.N.; Kim, S.U.; Rahimian, S.K.; Siegel, J.B.; Monroe, C.W.; Journal of Power Sources (March 2020); https://doi.org/10.1016/j.jpowsour.2020.227787
Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory; Dziedzic, J.; Bhandari, A.; Anton, L.; Peng, C.; Womack, J.C.; Famili, M.; Kramer, D.; Skylaris, C.-K.; Journal of Physical Chemistry C (March 2020); https://doi.org/10.1021/acs.jpcc.0c00762
Generalised single particle models for high-rate operation of graded lithium-ion electrodes: Systematic derivation and validation; Richardson, G.; Korotkin, I.; Ranom, R.; Castle, M.; Foster, J.M.; Electrochimica Acta (April 2020); https://doi.org/10.1016/j.electacta.2020.135862
Lithium intercalation edge effects and doping implications for graphite anodes; Peng, C.; Mercer, M.P.; Skylaris, C.-K.; Kramer, D.; Journal of Materials Chemistry A (April 2020); https://doi.org/10.1039/c9ta13862e
Derivation of an effective thermal electrochemical model for porous electrode batteries using asymptotic homogenisation; Hunt, M.J.; Brosa Planella, F.; Theil, F.; Widanage, W.D.; Journal of Engineering Mathematics (April 2020); https://doi.org/10.1007/s10665-020-10045-8
3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling; Lu, X.; Bertei, A.; Finegan, D.P.; Tan, C.; Daemi, S.R.; Weaving, J.S.; O’Regan, K.B.; Heenan, T.M.M.; Hinds, G.; Kendrick, E.; Brett, D.J.L.; Shearing, P.R.; Nature Communications (April 2020); https://doi.org/10.1038/s41467-020-15811-x (See also Degradation)
Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models; Chen, C.-H.; Brosa Planella, F.; O’Regan, K.; Gastol, D.; Widanage, W.D.; Kendrick, E.; Journal of the Electrochemical Society (May 2020); https://doi.org/10.1149/1945-7111/ab9050
Physical Origin of the Differential Voltage Minimum Associated with Lithium Plating in Li-Ion Batteries; O’Kane, S.E.J.; Campbell, I.D.; Marzook, M.W.J.; Offer, G.J.; Marinescu, M.; Journal of the Electrochemical Society (May 2020); https://doi.org/10.1149/1945-7111/ab90ac
The ONETEP linear-scaling density functional theory program; Prentice, J.C.A.; Aarons, J.; Womack, J.C.; Allen, A.E.A.; Andrinopoulos, L.; Anton, L.; Bell, R.A.; Bhandari, A.; Bramley, G.A.; Charlton, R.J.; Clements, R.J.; Cole, D.J.; Constantinescu, G.; Corsetti, F.; Dubois, S.M.-M.; Duff, K.K.B.; Escartín, J.M.; Greco, A.; Hill, Q.; Lee, L.P.; Linscott, E.; O’Regan, D.D.; Phipps, M.J.S.; Ratcliff, L.E.; Serrano, Á.R.; Tait, E.W.; Teobaldi, G.; Vitale, V.; Yeung, N.; Zuehlsdorff, T.J.; Dziedzic, J.; Haynes, P.D.; Hine, N.D.M.; Mostofi, A.A.; Payne, M.C.; Skylaris, C.-K.; Journal of Chemical Physics (May 2020); https://doi.org/10.1063/5.0004445
Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries; Gayon-Lombardo, A.; Mosser, L.; Brandon, N.P.; Cooper, S.J.; npj Computational Materials (June 2020); https://doi.org/10.1038/s41524-020-0340-7
Probing Heterogeneity in Li-Ion Batteries with Coupled Multiscale Models of Electrochemistry and Thermal Transport using Tomographic Domains; Tranter, T.G.; Timms, R.; Heenan, T.M.M.; Marquis, S.G.; Sulzer, V.; Jnawali, A.; Kok, M.D.R.; Please, C.P.; Chapman, S.J.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (July 2020); https://doi.org/10.1149/1945-7111/aba44b
Investigation of Path-Dependent Degradation in Lithium-Ion Batteries**; Raj, T.; Wang, A.A.; Monroe, C.W.; Howey, D.A.; Batteries and Supercaps (August 2020); https://doi.org/10.1002/batt.202000160
The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead; Nguyen, T.-T.; Demortière, A.; Fleutot, B.; Delobel, B.; Delacourt, C.; Cooper, S.J.; npj Computational Materials (August 2020); https://doi.org/10.1038/s41524-020-00386-4
In-situ fabrication of carbon-metal fabrics as freestanding electrodes for high-performance flexible energy storage devices; Liu, X.; Ouyang, M.; Orzech, M.W.; Niu, Y.; Tang, W.; Chen, J.; Marlow, M.N.; Puhan, D.; Zhao, Y.; Tan, R.; Colin, B.; Haworth, N.; Zhao, S.; Wang, H.; Childs, P.; Margadonna, S.; Wagemaker, M.; Pan, F.; Brandon, N.; George, C.; Wu, B.; Energy Storage Materials (Sept 2020); https://doi.org/10.1016/j.ensm.2020.04.001
Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces; Bhandari, A.; Anton, L.; Dziedzic, J.; Peng, C.; Kramer, D.; Skylaris, C.-K.; Journal of Chemical Physics (Sept 2020); https://doi.org/10.1063/5.0021210
Voltage hysteresis model for silicon electrodes for lithium ion batteries, including multi-step phase transformations, crystallization and amorphization; Jiang, Y.; Offer, G.; Jiang, J.; Marinescu, M.; Wang, H.; Journal of the Electrochemical Society (Oct 2020); https://doi.org/10.1149/1945-7111/abbbba
Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes; Wang, A.A.; Hou, T.; Karanjavala, M.; Monroe, C.W.; Electrochimica Acta (Oct 2020); https://doi.org/10.1016/j.electacta.2020.136688
A suite of reduced-order models of a single-layer lithium-ion pouch cell; Marquis, S.G.; Timms, R.; Sulzer, V.; Please, C.P.; Chapman, S.J.; Journal of the Electrochemical Society (Oct 2020); https://doi.org/10.1149/1945-7111/abbce4
The Cell Cooling Coefficient as a design tool to optimise thermal management of lithium-ion cells in battery packs; Hales, A.; Prosser, R.; Bravo Diaz, L.; White, G.; Patel, Y.; Offer, G.; eTransportation (Nov 2020); https://doi.org/10.1016/j.etran.2020.100089
Microstructural Evolution of Battery Electrodes During Calendering; Lu, X.; Daemi, S.R.; Bertei, A.; Kok, M.D.R.; O’Regan, K.B.; Rasha, L.; Park, J.; Hinds, G.; Kendrick, E.; Brett, D.J.L.; Shearing, P.R.; Joule (Nov 2020); https://doi.org/10.1016/j.joule.2020.10.010
Voltage hysteresis during lithiation/delithiation of graphite associated with meta-stable carbon stackings; Mercer, M.P.; Peng, C.; Soares, C.; Hoster, H.E.; Kramer, D.; Journal of Materials Chemistry A (Nov 2020); https://doi.org/10.1039/d0ta10403e
Communication-prediction of thermal issues for larger format 4680 cylindrical cells and their mitigation with enhanced current collection; Tranter, T.G.; Timms, R.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (Dec 2020); https://doi.org/10.1149/1945-7111/abd44f
Designer uniform Li plating/stripping through lithium–cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes; Liu, X.; Qian, X.; Tang, W.; Luo, H.; Zhao, Y.; Tan, R.; Qiao, M.; Gao, X.; Hua, Y.; Wang, H.; Zhao, S.; Lai, C.; Titirici, M.; Brandon, N.P.; Yang, S.; Wu, B.; Journal of Energy Chemistry (Jan 2021); https://doi.org/10.1016/j.jechem.2020.03.059
Online capacity estimation of lithium-ion batteries with deep long short-term memory networks; Li, W.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U.; Journal of Power Sources (Jan 2021); https://doi.org/10.1016/j.jpowsour.2020.228863
A Shrinking-Core Model for the Degradation of High-Nickel Cathodes (NMC811) in Li-Ion Batteries: Passivation Layer Growth and Oxygen Evolution; Ghosh, A.; Foster, J.M.; Offer, G.; Marinescu, M.; Journal of the Electrochemical Society (Feb 2021); https://doi.org/10.1149/1945-7111/abdc71
Finding a better fit for lithium ion batteries: A simple, novel, load dependent, modified equivalent circuit model and parameterization method; Hua, X.; Zhang, C.; Offer, G.; Journal of Power Sources (Feb 2021); https://doi.org/10.1016/j.jpowsour.2020.229117
Lithium-Ion Diagnostics: The First Quantitative In-Operando Technique for Diagnosing Lithium Ion Battery Degradation Modes under Load with Realistic Thermal Boundary Conditions; Prosser, R.; Offer, G.; Patel, Y.; Journal of the Electrochemical Society (March 2021); https://doi.org/10.1149/1945-7111/abed28
Unlocking extra value from grid batteries using advanced models; Reniers, J.M.; Mulder, G.; Howey, D.A.; Journal of Power Sources (March 2021); https://doi.org/10.1016/j.jpowsour.2020.229355
How Machine Learning Will Revolutionize Electrochemical Sciences; Mistry, A.; Franco, A.A.; Cooper, S.J.; Roberts, S.A.; Viswanathan, V.; ACS Energy Letters (March 2021); https://doi.org/10.1021/acsenergylett.1c00194
Lithium ion battery degradation: what you need to know; Edge, J.S.; O’Kane, S.; Prosser, R.; Kirkaldy, N.D.; Patel, A.N.; Hales, A.; Ghosh, A.; Ai, W.; Chen, J.; Yang, J.; Li, S.; Pang, M.-C.; Bravo Diaz, L.; Tomaszewska, A.; Marzook, M.W.; Radhakrishnan, K.N.; Wang, H.; Patel, Y.; Wu, B.; Offer, G.J.; Physical Chemistry Chemical Physics (March 2021); https://doi.org/10.1039/d1cp00359c
High-Energy Nickel-Cobalt-Aluminium Oxide (NCA) Cells on Idle: Anode- versus Cathode-Driven Side Reactions; Zülke, A.; Li, Y.; Keil, P.; Burrell, R.; Belaisch, S.; Nagarathinam, M.; Mercer, M.P.; Hoster, H.E.; Batteries and Supercaps (March 2021); https://doi.org/10.1002/batt.202100046
Optimal cell tab design and cooling strategy for cylindrical lithium-ion batteries; Li, S.; Kirkaldy, N.; Zhang, C.; Gopalakrishnan, K.; Amietszajew, T.; Diaz, L.B.; Barreras, J.V.; Shams, M.; Hua, X.; Patel, Y.; Offer, G.J.; Marinescu, M.; Journal of Power Sources (April 2021); https://doi.org/10.1016/j.jpowsour.2021.229594
Towards the digitalisation of porous energy materials: Evolution of digital approaches for microstructural design; Niu, Z.; Pinfield, V.J.; Wu, B.; Wang, H.; Jiao, K.; Leung, D.Y.C.; Xuan, J.; Energy and Environmental Science (April 2021); https://doi.org/10.1039/d1ee00398d
Asymptotic reduction of a lithium-ion pouch cell model; Timms, R.; Marquis, S.G.; Sulzer, V.; Please, C.P.; Chapman, S.J.; SIAM Journal on Applied Mathematics (May 2021); https://doi.org/10.1137/20M1336898
Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management; Lander, L.; Kallitsis, E.; Hales, A.; Edge, J.S.; Korre, A.; Offer, G.; Applied Energy (May 2021); https://doi.org/10.1016/j.apenergy.2021.116737
Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach; Couto, L.D.; Reniers, J.M.; Howey, D.A.; Kinnaert, M.; Proceedings of the American Control Conference (May 2021); https://doi.org/10.23919/ACC50511.2021.9482918
Battery Degradation-Aware Current Derating: An Effective Method to Prolong Lifetime and Ease Thermal Management; Schimpe, M.; Barreras, J.V.; Wu, B.; Offer, G.J.; Journal of the Electrochemical Society (June 2021); https://doi.org/10.1149/1945-7111/ac0553
Dandeliion v1: An extremely fast solver for the newman model of lithium-ion battery (dis)charge; Korotkin, I.; Sahu, S.; O’kane, S.E.J.; Richardson, G.; Foster, J.M.; Journal of the Electrochemical Society (June 2021); https://doi.org/10.1149/1945-7111/ac085f
Physical Modelling of the Slow Voltage Relaxation Phenomenon in Lithium-Ion Batteries; Kirk, T.L.; Please, C.P.; Jon Chapman, S.; Journal of the Electrochemical Society (June 2021); https://doi.org/10.1149/1945-7111/ac0bf7
Financial viability of electric vehicle lithium-ion battery recycling; Lander, L.; Cleaver, T.; Rajaeifar, M.A.; Nguyen-Tien, V.; Elliott, R.J.R.; Heidrich, O.; Kendrick, E.; Edge, J.S.; Offer, G.; iScience (June 2021); https://doi.org/10.1016/j.isci.2021.102787 (See also ReLIB)
A consensus algorithm for multi-objective battery balancing; Barreras, J.V.; de Castro, R.; Wan, Y.; Dragicevic, T.; Energies (July 2021); https://doi.org/10.3390/en14144279
Electrochemistry from first-principles in the grand canonical ensemble; Bhandari, A.; Peng, C.; Dziedzic, J.; Anton, L.; Owen, J.R.; Kramer, D.; Skylaris, C.-K.; Journal of Chemical Physics (July 2021); https://doi.org/10.1063/5.0056514
The challenge and opportunity of battery lifetime prediction from field data; Sulzer, V.; Mohtat, P.; Aitio, A.; Lee, S.; Yeh, Y.T.; Steinbacher, F.; Khan, M.U.; Lee, J.W.; Siegel, J.B.; Stefanopoulou, A.G.; Howey, D.A.; Joule (July 2021); https://doi.org/10.1016/j.joule.2021.06.005
Mechanism of Li nucleation at graphite anodes and mitigation strategies; Peng, C.; Bhandari, A.; Dziedzic, J.; Owen, J.R.; Skylaris, C.-K.; Kramer, D.; Journal of Materials Chemistry A (July 2021); https://doi.org/10.1039/d1ta03447b
Highly Aligned Ultra-Thick Gel-Based Cathodes Unlocking Ultra-High Energy Density Batteries; Yang, S.; Zhou, C.; Wang, Q.; Chen, B.; Zhao, Y.; Guo, B.; Zhang, Z.; Gao, X.; Chowdhury, R.; Wang, H.; Lai, C.; Brandon, N.P.; Wu, B.; Liu, X.; Energy and Environmental Materials (August 2021); https://doi.org/10.1002/eem2.12252
Systematic derivation and validation of a reduced thermal-electrochemical model for lithium-ion batteries using asymptotic methods; Brosa Planella, F.; Sheikh, M.; Widanage, W.D.; Electrochimica Acta (August 2021); https://doi.org/10.1016/j.electacta.2021.138524
Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach; Wang, A.A.; Gunnarsdóttir, A.B.; Fawdon, J.; Pasta, M.; Grey, C.P.; Monroe, C.W.; ACS Energy Letters (August 2021); https://doi.org/10.1021/acsenergylett.1c01213
Implementation for a cloud battery management system based on the CHAIN framework; Yang, S.; Zhang, Z.; Cao, R.; Wang, M.; Cheng, H.; Zhang, L.; Jiang, Y.; Li, Y.; Chen, B.; Ling, H.; Lian, Y.; Wu, B.; Liu, X.; Energy and AI (Sept 2021); https://doi.org/10.1016/j.egyai.2021.100088
One-shot battery degradation trajectory prediction with deep learning; Li, W.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U.; Journal of Power Sources (Sept 2021); https://doi.org/10.1016/j.jpowsour.2021.230024
Overscreening and Underscreening in Solid-Electrolyte Grain Boundary Space-Charge Layers; Dean, J.M.; Coles, S.W.; Saunders, W.R.; McCluskey, A.R.; Wolf, M.J.; Walker, A.B.; Morgan, B.J.; Physical Review Letters (Sept 2021); https://doi.org/10.1103/PhysRevLett.127.135502
Charge transport modelling of Lithium-ion batteries; Richardson, G.W.; Foster, J.M.; Ranom, R.; Please, C.P.; Ramos, A.M.; European Journal of Applied Mathematics (Oct 2021); https://doi.org/10.1017/S0956792521000292
Heat generation and a conservation law for chemical energy in Li-ion batteries; Richardson, G.; Korotkin, I.; Electrochimica Acta (Oct 2021); https://doi.org/10.1016/j.electacta.2021.138909
Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries; Pang, M.-C.; Yang, K.; Brugge, R.; Zhang, T.; Liu, X.; Pan, F.; Yang, S.; Aguadero, A.; Wu, B.; Marinescu, M.; Wang, H.; Offer, G.J.; Materials Today (Oct 2021); https://doi.org/10.1016/j.mattod.2021.02.011
On uncertainty quantification in the parametrization of newman-type models of lithium-ion batteries; Escalante, J.M.; Sahu, S.; Foster, J.M.; Protas, B.; Journal of the Electrochemical Society (Nov 2021); https://doi.org/10.1149/1945-7111/ac3159
Lithium-ion battery cathode and anode potential observer based on reduced-order electrochemical single particle model; Li, L.; Ren, Y.; O’Regan, K.; Koleti, U.R.; Kendrick, E.; Widanage, W.D.; Marco, J.; Journal of Energy Storage (Dec 2021); https://doi.org/10.1016/j.est.2021.103324
Parametrisation and Use of a Predictive DFN Model for a High-Energy NCA/Gr-SiOx Battery; Zülke, A.; Korotkin, I.; Foster, J.M.; Nagarathinam, M.; Hoster, H.; Richardson, G.; Journal of the Electrochemical Society (Dec 2021); https://doi.org/10.1149/1945-7111/ac3e4a
Predicting battery end of life from solar off-grid system field data using machine learning; Aitio, A.; Howey, D.A.; Joule (Dec 2021); https://doi.org/10.1016/j.joule.2021.11.006
From Atoms to Cells: Multiscale Modeling of LiNixMnyCozO2Cathodes for Li-Ion Batteries; Morgan, L.M.; Islam, M.M.; Yang, H.; O’Regan, K.; Patel, A.N.; Ghosh, A.; Kendrick, E.; Marinescu, M.; Offer, G.J.; Morgan, B.J.; Islam, M.S.; Edge, J.; Walsh, A.; ACS Energy Letters (Dec 2021); https://doi.org/10.1021/acsenergylett.1c02028
Sodiation Of Hard Carbon: How Separating Enthalpy And Entropy Contributions Can Find Transitions Hidden In The Voltage Profile; Mercer, M.P.; Affleck, S.; Gavilán-Arriazu, E.M.; Zülke, A.A.; Maughan, P.A.; Trivedi, S.; Fichtner, M.; Reddy Munnangi, A.; Leiva, E.P.M.; Hoster, H.E.; ChemPhysChem (Dec 2021); https://doi.org/10.1002/cphc.202100748
Peak-tracking method to quantify degradation modes in lithium-ion batteries via differential voltage and incremental capacity; Chen, J.; Marlow, M.N.; Jiang, Q.; Wu, B.; Journal of Energy Storage (Jan 2022); https://doi.org/10.1016/j.est.2021.103669
Lithium-ion batteries under pulsed current operation to stabilize future grids; Qin, Y.; Chen, X.; Tomaszewska, A.; Chen, H.; Wei, Y.; Zhu, H.; Li, Y.; Cui, Z.; Huang, J.; Du, J.; Han, X.; Lu, L.; Wu, B.; Sun, K.; Zhang, Q.; Ouyang, M.; Cell Reports Physical Science (Jan 2022); https://doi.org/10.1016/j.xcrp.2021.100708
Consolidated theory of fluid thermodiffusion; Van-Brunt, A.; Farrell, P.E.; Monroe, C.W.; AIChE Journal (Jan 2022); https://doi.org/10.1002/aic.17599
Meta-analysis of experimental results for heat capacity and thermal conductivity in lithium-ion batteries: A critical review; Steinhardt, M.; Barreras, J.V.; Ruan, H.; Wu, B.; Offer, G.J.; Jossen, A.; Journal of Power Sources (Feb 2022); https://doi.org/10.1016/j.jpowsour.2021.230829
Anisotropic Thermal Characterisation of Large-Format Lithium-Ion Pouch Cells**; Lin, J.; Chu, H.N.; Monroe, C.W.; Howey, D.A.; Batteries and Supercaps (Feb 2022); https://doi.org/10.1002/batt.202100401
liionpack: A Python package for simulating packs of batteries with PyBaMM; Tranter, T.G.; Timms, R.; Sulzer, V.; Brosa Planella, F.; Wiggins, G.M.; Karra, S.V.; Agarwal, P.; Chopra, S.; Allu, S.; Shearing, P.R.; Brett, D.J.L.; Journal of Open Source Software (Feb 2022); https://doi.org/10.21105/joss.04051
Measuring Irreversible Heat Generation in Lithium-Ion Batteries: An Experimental Methodology; Diaz, L.B.; Hales, A.; Marzook, M.W.; Patel, Y.; Offer, G.; Journal of the Electrochemical Society (March 2022); https://doi.org/10.1149/1945-7111/ac5ada
Lithium-ion battery degradation: how to model it; O’Kane, S.E.J.; Ai, W.; Madabattula, G.; Alonso-Alvarez, D.; Timms, R.; Sulzer, V.; Edge, J.S.; Wu, B.; Offer, G.J.; Marinescu, M.; Physical Chemistry Chemical Physics (March 2022); https://doi.org/10.1039/d2cp00417h
Immersion cooling for lithium-ion batteries – A review; Roe, C.; Feng, X.; White, G.; Li, R.; Wang, H.; Rui, X.; Li, C.; Zhang, F.; Null, V.; Parkes, M.; Patel, Y.; Wang, Y.; Wang, H.; Ouyang, M.; Offer, G.; Wu, B.; Journal of Power Sources (March 2022); https://doi.org/10.1016/j.jpowsour.2022.231094
MODELING ELECTRODE HETEROGENEITY IN LITHIUM-ION BATTERIES: UNIMODAL AND BIMODAL PARTICLE-SIZE DISTRIBUTIONS; Kirk, T.L.; Evans, J.; Please, C.P.; Chapman, S.J.; SIAM Journal on Applied Mathematics (April 2022); https://doi.org/10.1137/20M1344305S
Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling; Boyce, A.M.; Martínez-Pañeda, E.; Wade, A.; Zhang, Y.S.; Bailey, J.J.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (April 2022); https://doi.org/10.1016/j.jpowsour.2022.231119 (See also Degradation, Nextrode and ReLIB)
Operando Ultrasonic Monitoring of Lithium-Ion Battery Temperature and Behaviour at Different Cycling Rates and under Drive Cycle Conditions; Owen, R.E.; Robinson, J.B.; Weaving, J.S.; Pham, M.T.M.; Tranter, T.G.; Neville, T.P.; Billson, D.; Braglia, M.; Stocker, R.; Tidblad, A.A.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (April 2022); https://doi.org/10.1149/1945-7111/ac6833 (See also Degradation, SafeBatt, LiSTAR and ReLIB)
A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes; Ai, W.; Kirkaldy, N.; Jiang, Y.; Offer, G.; Wang, H.; Wu, B.; Journal of Power Sources (April 2022); https://doi.org/10.1016/j.jpowsour.2022.231142
A greyscale erosion algorithm for tomography (GREAT) to rapidly detect battery particle defects; Wade, A.; Heenan, T.M.M.; Kok, M.; Tranter, T.; Leach, A.; Tan, C.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; npj Materials Degradation (May 2022); https://doi.org/10.1038/s41529-022-00255-z (See also Degradation)
qTSL: A Multilayer Control Framework for Managing Capacity, Temperature, Stress, and Losses in Hybrid Balancing Systems; De Castro, R.; Pereira, H.; Araujo, R.E.; Barreras, J.V.; Pangborn, H.C.; IEEE Transactions on Control Systems Technology (May 2022); https://doi.org/10.1109/TCST.2021.3103483
Li nucleation on the graphite anode under potential control in Li-ion batteries; Bhandari, A.; Peng, C.; Dziedzic, J.; Owen, J.R.; Kramer, D.; Skylaris, C.-K.; Journal of Materials Chemistry A (May 2022); https://doi.org/10.1039/d2ta02420a
Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models; Wang, A.A.; O’Kane, S.E.J.; Brosa Planella, F.; Houx, J.L.; O’Regan, K.; Zyskin, M.; Edge, J.; Monroe, C.W.; Cooper, S.J.; Howey, D.A.; Kendrick, E.; Foster, J.M.; Progress in Energy (May 2022); https://doi.org/10.1088/2516-1083/ac692c
Multiscale coupling of surface temperature with solid diffusion in large lithium-ion pouch cells; Lin, J.; Chu, H.N.; Howey, D.A.; Monroe, C.W.; Communications Engineering (May 2022); https://doi.org/10.1038/s44172-022-00005-8
Modelling Solvent Consumption from SEI Layer Growth in Lithium-Ion Batteries; Li, R.; O’Kane, S.; Marinescu, M.; Offer, G.J.; Journal of the Electrochemical Society (June 2022); https://doi.org/10.1149/1945-7111/ac6f84
The Effects of Temperature and Cell Parameters on Lithium-Ion Battery Fast Charging Protocols: A Model-Driven Investigation; Tomaszewska, A.; Parkes, M.; Doel, R.; Offer, G.; Wu, B.; Journal of the Electrochemical Society (June 2022); https://doi.org/10.1149/1945-7111/ac79d3
Methods – Kintsugi Imaging of Battery Electrodes: Distinguishing Pores from the Carbon Binder Domain using PT Deposition; Cooper, S.J.; Roberts, S.A.; Liu, Z.; Winiarski, B.; Journal of the Electrochemical Society (July 2022); https://doi.org/10.1149/1945-7111/ac7a68
A continuum of physics-based lithium-ion battery models reviewed; Brosa Planella, F.; Ai, W.; Boyce, A.M.; Ghosh, A.; Korotkin, I.; Sahu, S.; Sulzer, V.; Timms, R.; Tranter, T.G.; Zyskin, M.; Cooper, S.J.; Edge, J.S.; Foster, J.M.; Marinescu, M.; Wu, B.; Richardson, G.; Progress in Energy (July 2022); https://doi.org/10.1088/2516-1083/ac7d31 (See also Nextrode)
Generalised diagnostic framework for rapid battery degradation quantification with deep learning; Ruan, H.; Chen, J.; Ai, W.; Wu, B.; Energy and AI (August 2022); https://doi.org/10.1016/j.egyai.2022.100158
Identifiability of Lithium-Ion Battery Electrolyte Dynamics; Couto, L.D.; Drummond, R.; Zhang, D.; Kirk, T.; Howey, D.A.; Proceedings of the American Control Conference (Sept 2022); https://doi.org/10.23919/ACC53348.2022.9867154
Thermal-electrochemical parameters of a high energy lithium-ion cylindrical battery; O’Regan, K.; Brosa Planella, F.; Widanage, W.D.; Kendrick, E.; Electrochimica Acta (Sept 2022); https://doi.org/10.1016/j.electacta.2022.140700
Current-driven solvent segregation in lithium-ion electrolytes; Wang, A.A.; Greenbank, S.; Li, G.; Howey, D.A.; Monroe, C.W.; Cell Reports Physical Science (Sept 2022); https://doi.org/10.1016/j.xcrp.2022.101047
Exploring the influence of porosity and thickness on lithium-ion battery electrodes using an image-based model; Boyce, A.M.; Lu, X.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Sept 2022); https://doi.org/10.1016/j.jpowsour.2022.231779 (See also Nextrode)
A coupled phase field formulation for modelling fatigue cracking in lithium-ion battery electrode particles; Ai, W.; Wu, B.; Martínez-Pañeda, E.; Journal of Power Sources (Oct 2022); https://doi.org/10.1016/j.jpowsour.2022.231805
Thermal evaluation of lithium-ion batteries: Defining the cylindrical cell cooling coefficient; Marzook, M.W.; Hales, A.; Patel, Y.; Offer, G.; Marinescu, M.; Journal of Energy Storage (Oct 2022); https://doi.org/10.1016/j.est.2022.105217
Entropy Profiling for the Diagnosis of NCA/Gr-SiOx Li-Ion Battery Health; Wojtala, M.; Zulke, A.A.; Burrell, R.M.; Nagarathinam, M.; Li, G.; Hoster, H.; Howey, D.A.; Mercer, M.; Journal of The Electrochemical Society (Oct 2022); https://doi.org/10.1149/1945-7111/ac87d1
Revealing the rate-limiting electrode of lithium batteries at high rates and mass loadings; Chen, Y.; Key, J.; O’Regan, K.; Song, T.; Han, Y.; Kendrick, E.; Chemical Engineering Journal (Dec 2022); https://doi.org/10.1016/j.cej.2022.138275
A user-friendly lithium battery simulator based on open-source CFD; Yang Jiang, Lingding Zhang, Gregory Offer, Huizhi Wang; Digital Chemical Engineering (Dec 2022); https://doi.org/10.1016/j.dche.2022.100055
ReLiB: Recycling and reuse of lithium-ion batteries
Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles; Raugei, M.; Winfield, P.; Journal of Cleaner Production (March 2019); https://doi.org/10.1016/j.jclepro.2018.12.237
Production of biogenic nanoparticles for the reduction of 4-Nitrophenol and oxidative laccase-like reactions; Capeness, M.J.; Echavarri-Bravo, V.; Horsfall, L.E.; Frontiers in Microbiology (May 2019); https://doi.org/10.3389/fmicb.2019.00997
Sorting of Spent Electric Vehicle Batteries for Second Life Application; Muhammad, M.; Attidekou, P.S.; Ahmeid, M.; Milojevic, Z.; Lambert, S.; 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE) (August 2019); https://doi.org/10.1109/SEGE.2019.8859921
Energy Return on Investment: Setting the Record Straight; Raugei, M.; Joule (August 2019); https://doi.org/10.1016/j.joule.2019.07.020
‘Our Waste, our Resources; A Strategy for England’– Switching to a circular economy through the use of extended producer responsibility; Dawson, L.; Environmental Law Review (Sept 2019); https://doi.org/10.1177/1461452919851943
Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies; Rajaeifar, M.A.; Tabatabaei, M.; Aghbashlo, M.; Nizami, A.-S.; Heidrich, O.; Renewable and Sustainable Energy Reviews (Sept 2019); https://doi.org/10.1016/j.rser.2019.05.004
The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget; Hill, G.; Heidrich, O.; Creutzig, F.; Blythe, P.; Applied Energy (Oct 2019); https://doi.org/10.1016/j.apenergy.2019.04.107
Assessment of spent EV batteries for second-life application; Muhammad, M.; Ahmeid, M.; Attidekou, P.S.; Milojevic, Z.; Lambert, S.; Das, P.; 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC) (Nov 2019); https://doi.org/10.1109/IFEEC47410.2019.9015015
The Energy Loss Due to Interconnections in Paralleled Cell Configurations of Lithium-Ion Batteries in Electric Vehicles; Ahmeid, M.; Muhammad, M.; Milojevic, Z.; Lambert, S.; Attidekou, P.; 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC) (Nov 2019); https://doi.org/10.1109/IFEEC47410.2019.9014956
Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents; Al-Murshedi, A.Y.M.; Hartley, J.M.; Abbott, A.P.; Ryder, K.S.; Transactions of the Institute of Metal Finishing (Nov 2019); https://doi.org/10.1080/00202967.2019.1671062
Recycling lithium-ion batteries from electric vehicles; Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; Abbott, A.; Ryder, K.; Gaines, L.; Anderson, P.; Nature (Nov 2019); https://doi.org/10.1038/s41586-019-1682-5
What Are the Energy and Environmental Impacts of Adding Battery Storage to Photovoltaics? A Generalized Life Cycle Assessment; Raugei, M.; Leccisi, E.; Fthenakis, V.M.; Energy Technology (Jan 2020); https://doi.org/10.1002/ente.201901146
Object shape estimation and modeling, based on sparse Gaussian process implicit surfaces, combining visual data and tactile exploration; Gandler, G.Z.; Ek, C.H.; Björkman, M.; Stolkin, R.; Bekiroglu, Y.; Robotics and Autonomous Systems (April 2020); https://doi.org/10.1016/j.robot.2020.103433
Disassembly of Li ion cells—characterization and safety considerations of a recycling scheme; Marshall, J.; Gastol, D.; Sommerville, R.; Middleton, B.; Goodship, V.; Kendrick, E.; Metals (June 2020); https://doi.org/10.3390/met10060773
Experimental Visualization of Commercial Lithium Ion Battery Cathodes: Distinguishing between the Microstructure Components Using Atomic Force Microscopy; Terreblanche, J.S.; Thompson, D.L.; Aldous, I.M.; Hartley, J.; Abbott, A.P.; Ryder, K.S.; Journal of Physical Chemistry C (June 2020); https://doi.org/10.1021/acs.jpcc.0c02713
The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries; Driscoll, E.H.; Hayward, E.C.; Patchett, R.; Anderson, P.A.; Slater, P.R.; Journal of Chemical Education (June 2020); https://doi.org/10.1021/acs.jchemed.0c00282 (See also Catmat, Degradation and Nextrode)
The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents; Pateli, I.M.; Thompson, D.; Alabdullah, S.S.M.; Abbott, A.P.; Jenkin, G.R.T.; Hartley, J.M.; Green Chemistry (July 2020); https://doi.org/10.1039/d0gc02023k
A circular economy for electric vehicle batteries: driving the change; Ahuja, J.; Dawson, L.; Lee, R.; Journal of Property, Planning and Environmental Law (August 2020); https://doi.org/10.1108/JPPEL-02-2020-0011
A review of physical processes used in the safe recycling of lithium ion batteries; Sommerville, R.; Shaw-Stewart, J.; Goodship, V.; Rowson, N.; Kendrick, E.; Sustainable Materials and Technologies (Sept 2020); https://doi.org/10.1016/j.susmat.2020.e00197
Fast operando X-ray pair distribution function using the DRIX electrochemical cell; Diaz-Lopez, M.; Cutts, G.L.; Allan, P.K.; Keeble, D.S.; Ross, A.; Pralong, V.; Spiekermann, G.; Chatera, P.A.; Journal of Synchrotron Radiation (Sept 2020); https://doi.org/10.1107/S160057752000747X
Circular economy strategies for electric vehicle batteries reduce reliance on raw materials; Baars, J.; Domenech, T.; Bleischwitz, R.; Melin, H.E.; Heidrich, O.; Nature Sustainability (Sept 2020); https://doi.org/10.1038/s41893-020-00607-0
A rapid neural network–based state of health estimation scheme for screening of end of life electric vehicle batteries; Rastegarpanah, A.; Hathaway, J.; Ahmeid, M.; Lambert, S.; Walton, A.; Stolkin, R.; Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering (Sept 2020); https://doi.org/10.1177/0959651820953254
Does energy storage provide a profitable second life for electric vehicle batteries?; Wu, W.; Lin, B.; Xie, C.; Elliott, R.J.R.; Radcliffe, J.; Energy Economics (Oct 2020); https://doi.org/10.1016/j.eneco.2020.105010
Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes; Nicholls, D.; Lee, J.; Amari, H.; Stevens, A.J.; Mehdi, B.L.; Browning, N.D.; Nanoscale (Oct 2020); https://doi.org/10.1039/d0nr04589f (See also Degradation and Characterisation)
The importance of design in lithium ion battery recycling-a critical review; Thompson, D.L.; Hartley, J.M.; Lambert, S.M.; Shiref, M.; Harper, G.D.J.; Kendrick, E.; Anderson, P.; Ryder, K.S.; Gaines, L.; Abbott, A.P.; Green Chemistry (Oct 2020); https://doi.org/10.1039/d0gc02745f
Beyond the EVent horizon: Battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition; Skeete, J.-P.; Wells, P.; Dong, X.; Heidrich, O.; Harper, G.; Energy Research and Social Science (Nov 2020); https://doi.org/10.1016/j.erss.2020.101581
Are Current 3D Descriptors Ready for Real-time Object Recognition?; Joshi, P.; Rastegarpanah, A.; Stolkin, R.; 2020 8th International Conference on Control, Mechatronics and Automation, ICCMA 2020 (Nov 2020); https://doi.org/10.1109/ICCMA51325.2020.9301565
A Survey on Training Free 3D Texture-less Object Recognition Techniques; Joshi, P.; Rastegarpanah, A.; Stolkin, R.; 2020 Digital Image Computing: Techniques and Applications, DICTA 2020 (Nov 2020); https://doi.org/10.1109/DICTA51227.2020.9363389
Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents; Pateli, I.M.; Abbott, A.P.; Jenkin, G.R.T.; Hartley, J.M.; Green Chemistry (Nov 2020); https://doi.org/10.1039/d0gc03491f
Methodologies for Large-Size Pouch Lithium-Ion Batteries End-of-Life Gateway Detection in the Second-Life Application; Attidekou, P.S.; Milojevic, Z.; Muhammad, M.; Ahmeid, M.; Lambert, S.; Das, P.K.; Journal of the Electrochemical Society (Dec 2020); https://doi.org/10.1149/1945-7111/abd1f1
The EV revolution: The road ahead for critical raw materials demand; Jones, B.; Elliott, R.J.R.; Nguyen-Tien, V.; Applied Energy (Dec 2020); https://doi.org/10.1016/j.apenergy.2020.115072
Optimal grasp selection, and control for stabilising a grasped object, with respect to slippage and external forces; Pardi, T.; Ghalamzan E., A.; Ortenzi, V.; Stolkin, R.; 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids) (Jan 2021); https://doi.org/10.1109/HUMANOIDS47582.2021.9555805
A qualitative assessment of lithium ion battery recycling processes; Sommerville, R.; Zhu, P.; Rajaeifar, M.A.; Heidrich, O.; Goodship, V.; Kendrick, E.; Resources, Conservation and Recycling (Feb 2021); https://doi.org/10.1016/j.resconrec.2020.105219
A review of current collectors for lithium-ion batteries; Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E.; Journal of Power Sources (Feb 2021); https://doi.org/10.1016/j.jpowsour.2020.229321
A Unified Method for the Recovery of Metals from Chalcogenides; Bevan, F.; Galeb, H.; Black, A.; Pateli, I.M.; Allen, J.; Perez, M.; Feldmann, J.; Harris, R.; Jenkin, G.; Abbott, A.; Hartley, J.; ACS Sustainable Chemistry and Engineering (Feb 2021); https://doi.org/10.1021/acssuschemeng.0c09120
Motion planning and control of an omnidirectional mobile robot in dynamic environments; Azizi, M.R.; Rastegarpanah, A.; Stolkin, R.; Robotics (March 2021); https://doi.org/10.3390/robotics10010048
Lithium: The big picture; Crawford, A.; Lunde Seefeldt, J.; Kent, R.; Helbert, M.; Guzmán, G.P.; González, A.; Chen, Z.; Abbott, A.; One Earth (March 2021); https://doi.org/10.1016/j.oneear.2021.02.021
Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy; Lee, J.; Nicholls, D.; Browning, N.D.; Mehdi, B.L.; Physical Chemistry Chemical Physics (March 2021); https://doi.org/10.1039/d0cp06369j (See also Degradation and Characterisation)
Towards robotizing the processes of testing lithium-ion batteries; Rastegarpanah, A.; Ahmeid, M.; Marturi, N.; Attidekou, P.S.; Musbahu, M.; Ner, R.; Lambert, S.; Stolkin, R.; Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering (March 2021); https://doi.org/10.1177/0959651821998599
A dynamic material flow analysis of lithium-ion battery metals for electric vehicles and grid storage in the UK: Assessing the impact of shared mobility and end-of-life strategies; Kamran, M.; Raugei, M.; Hutchinson, A.; Resources, Conservation and Recycling (April 2021); https://doi.org/10.1016/j.resconrec.2021.105412
A training free technique for 3D object recognition using the concept of vibration, energy and frequency[Formula presented]; Joshi, P.; Rastegarpanah, A.; Stolkin, R.; Computers and Graphics (Pergamon) (April 2021); https://doi.org/10.1016/j.cag.2021.01.014
Simultaneous Tactile Exploration and Grasp Refinement for Unknown Objects; De Farias, C.; Marturi, N.; Stolkin, R.; Bekiroglu, Y.; IEEE Robotics and Automation Letters (April 2021); https://doi.org/10.1109/LRA.2021.3063074
Rapid model-free state of health estimation for end-of-first-life electric vehicle batteries using impedance spectroscopy; Rastegarpanah, A.; Hathaway, J.; Stolkin, R.; Energies (May 2021); https://doi.org/10.3390/en14092597
Thermal and mechanical abuse of electric vehicle pouch cell modules; Christensen, P.A.; Milojevic, Z.; Wise, M.S.; Ahmeid, M.; Attidekou, P.S.; Mrozik, W.; Dickmann, N.A.; Restuccia, F.; Lambert, S.M.; Das, P.K.; Applied Thermal Engineering (May 2021); https://doi.org/10.1016/j.applthermaleng.2021.116623
Steering extended producer responsibility for electric vehicle batteries; Dawson, L.; Ahuja, J.; Lee, R.; Environmental Law Review (May 2021); https://doi.org/10.1177/14614529211006069
Semi-autonomous behaviour tree-based framework for sorting electric vehicle batteries components; Rastegarpanah, A.; Gonzalez, H.C.; Stolkin, R.; Robotics (June 2021); https://doi.org/10.3390/robotics10020082
Lithium ion battery recycling using high-intensity ultrasonication; Lei, C.; Aldous, I.; Hartley, J.M.; Thompson, D.L.; Scott, S.; Hanson, R.; Anderson, P.A.; Kendrick, E.; Sommerville, R.; Ryder, K.S.; Abbott, A.P.; Green Chemistry (June 2021); https://doi.org/10.1039/d1gc01623g
Financial viability of electric vehicle lithium-ion battery recycling; Lander, L.; Cleaver, T.; Rajaeifar, M.A.; Nguyen-Tien, V.; Elliott, R.J.R.; Heidrich, O.; Kendrick, E.; Edge, J.S.; Offer, G.; iScience (June 2021); https://doi.org/10.1016/j.isci.2021.102787 (See also MSM)
The Complex Role of Aluminium Contamination in Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries; Lee, J.; Amari, H.; Bahri, M.; Shen, Z.; Xu, C.; Ruff, Z.; Grey, C.P.; Ersen, O.; Aguadero, A.; Browning, N.D.; Mehdi, B.L.; Batteries and Supercaps (June 2021); https://doi.org/10.1002/batt.202100110 (See also Degradation)
Life cycle assessment of lithium-ion battery recycling using pyrometallurgical technologies; Rajaeifar, M.A.; Raugei, M.; Steubing, B.; Hartwell, A.; Anderson, P.A.; Heidrich, O.; Journal of Industrial Ecology (June 2021); https://doi.org/10.1111/jiec.13157
Optimized hybrid decoupled visual servoing with supervised learning; Rastegarpanah, A.; Aflakian, A.; Stolkin, R.; Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering (June 2021); https://doi.org/10.1177/09596518211028379
Global implications of the EU battery regulation; Melin, H.E.; Rajaeifar, M.A.; Ku, A.Y.; Kendall, A.; Harper, G.; Heidrich, O.; Science (July 2021); https://doi.org/10.1126/science.abh1416
Vision-Guided MPC for Robotic Path Following Using Learned Memory-Augmented Model; Rastegarpanah, A.; Hathaway, J.; Stolkin, R.; Frontiers in Robotics and AI (July 2021); https://doi.org/10.3389/frobt.2021.688275
Nut unfastening by robotic surface exploration; Rastegarpanah, A.; Ner, R.; Stolkin, R.; Marturi, N.; Robotics (Sept 2021); https://doi.org/10.3390/robotics10030107
Risk management over the life cycle of lithium-ion batteries in electric vehicles; Christensen, P.A.; Anderson, P.A.; Harper, G.D.J.; Lambert, S.M.; Mrozik, W.; Rajaeifar, M.A.; Wise, M.S.; Heidrich, O.; Renewable and Sustainable Energy Reviews (Sept 2021); https://doi.org/10.1016/j.rser.2021.111240
Influence of orientation on ageing of large-size pouch lithium-ion batteries during electric vehicle life; Milojevic, Z.; Attidekou, P.S.; Muhammad, M.; Ahmeid, M.; Lambert, S.; Das, P.K.; Journal of Power Sources (Sept 2021); https://doi.org/10.1016/j.jpowsour.2021.230242
An Efficient Technique for Filtering of 3D Cluttered Surfaces; Joshi, P.; Rastegarpanah, A.; Stolkin, R.; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Oct 2021); https://doi.org/10.1007/978-3-030-87897-9_4
Deep eutectic solvents—The vital link between ionic liquids and ionic solutions; Abbott, A.P.; Edler, K.J.; Page, A.J.; Journal of Chemical Physics (Oct 2021); https://doi.org/10.1063/5.0072268
Environmental impacts, pollution sources and pathways of spent lithium-ion batteries; Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P.; Energy and Environmental Science (Oct 2021); https://doi.org/10.1039/d1ee00691f (See also SafeBatt)
Environmental implications of the ongoing electrification of the UK light duty vehicle fleet; Raugei, M.; Kamran, M.; Hutchinson, A.; Resources, Conservation and Recycling (Nov 2021); https://doi.org/10.1016/j.resconrec.2021.105818
Debondable adhesives and their use in recycling; Mulcahy, K.R.; Kilpatrick, A.F.R.; Harper, G.D.J.; Walton, A.; Abbott, A.P.; Green Chemistry (Nov 2021); https://doi.org/10.1039/d1gc03306a
Improving the manipulability of a redundant arm using decoupled hybrid visual servoing; Rastegarpanah, A.; Aflakian, A.; Stolkin, R.; Applied Sciences (Switzerland) (Dec 2021); https://doi.org/10.3390/app112311566
To shred or not to shred: A comparative techno-economic assessment of lithium ion battery hydrometallurgical recycling retaining value and improving circularity in LIB supply chains; Thompson, D.; Hyde, C.; Hartley, J.M.; Abbott, A.P.; Anderson, P.A.; Harper, G.D.J.; Resources, Conservation and Recycling (Dec 2021); https://doi.org/10.1016/j.resconrec.2021.105741
Nanoscale state-of-charge heterogeneities within polycrystalline nickel-rich layered oxide cathode materials; Tan, C.; Leach, A.S.; Heenan, T.M.M.; Parks, H.; Jervis, R.; Weker, J.N.; Brett, D.J.L.; Shearing, P.R.; Cell Reports Physical Science (Dec 2021); https://doi.org/10.1016/j.xcrp.2021.100647 (See also Degradation and SafeBatt)
Predicting the Remaining Life of Lithium-ion Batteries Using a CNN-LSTM Model; Rastegarpanah, A.; Wang, Y.; Stolkin, R.; 2022 8th International Conference on Mechatronics and Robotics Engineering, ICMRE 2022 (Jan 2022); https://doi.org/10.1109/ICMRE54455.2022.9734081
Calcium chloride-based systems for metal electrodeposition; Hartley, J.M.; Allen, J.; Meierl, J.; Schmidt, A.; Krossing, I.; Abbott, A.P.; Electrochimica Acta (Jan 2022); https://doi.org/10.1016/j.electacta.2021.139560
Catalytic dissolution of metals from printed circuit boards using a calcium chloride-based deep eutectic solvent; Marin Rivera, R.; Zante, G.; Hartley, J.M.; Ryder, K.S.; Abbott, A.P.; Green Chemistry (March 2022); https://doi.org/10.1039/d1gc04694b
Impact of solid-electrolyte interphase layer thickness on lithium-ion battery cell surface temperature; Andriunas, I.; Milojevic, Z.; Wade, N.; Das, P.K.; Journal of Power Sources (March 2022); https://doi.org/10.1016/j.jpowsour.2022.231126
High-Voltage Stabilization of O3-Type Layered Oxide for Sodium-Ion Batteries by Simultaneous Tin Dual Modification; Song, T.; Chen, L.; Gastol, D.; Dong, B.; Marco, J.F.; Berry, F.; Slater, P.; Reed, D.; Kendrick, E.; Chemistry of Materials (April 2022); https://doi.org/10.1021/acs.chemmater.2c00522 (See also Catmat)
Motion-enhancement assisted digital image correlation of lithium-ion batteries during lithiation; Jnawali, A.; Radhakrishnan, A.N.P.; Kok, M.D.R.; Iacoviello, F.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (April 2022); https://doi.org/10.1016/j.jpowsour.2022.231150 (See also SafeBatt)
Operando Ultrasonic Monitoring of Lithium-Ion Battery Temperature and Behaviour at Different Cycling Rates and under Drive Cycle Conditions; Owen, R.E.; Robinson, J.B.; Weaving, J.S.; Pham, M.T.M.; Tranter, T.G.; Neville, T.P.; Billson, D.; Braglia, M.; Stocker, R.; Tidblad, A.A.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (April 2022); https://doi.org/10.1149/1945-7111/ac6833 (See also MSM, Degradation, SafeBatt and LiSTAR)
Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling; Boyce, A.M.; Martínez-Pañeda, E.; Wade, A.; Zhang, Y.S.; Bailey, J.J.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (April 2022); https://doi.org/10.1016/j.jpowsour.2022.231119 (Joint project with MSM, Degradation and Nextrode)
Gelatin and Alginate Binders for Simplified Battery Recycling; Scott, S.; Terreblanche, J.; Thompson, D.L.; Lei, C.; Hartley, J.M.; Abbott, A.P.; Ryder, K.S.; Journal of Physical Chemistry C (May 2022); https://doi.org/10.1021/acs.jpcc.2c01282
Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective; Rajaeifar, M.A.; Ghadimi, P.; Raugei, M.; Wu, Y.; Heidrich, O.; Resources, Conservation and Recycling (May 2022); https://doi.org/10.1016/j.resconrec.2021.106144
Separation of nickel from cobalt and manganese in lithium ion batteries using deep eutectic solvents; Thompson, D.L.; Pateli, I.M.; Lei, C.; Jarvis, A.; Abbott, A.P.; Hartley, J.M.; Green Chemistry (May 2022); https://doi.org/10.1039/d2gc00606e
A rapid capacity evaluation of retired electric vehicle battery modules using partial discharge test; Ahmeid, M.; Muhammad, M.; Lambert, S.; Attidekou, P.S.; Milojevic, Z.; Journal of Energy Storage (June 2022); https://doi.org/10.1016/j.est.2022.104562
LAYERS: A Decision-Support Tool to Illustrate and Assess the Supply and Value Chain for the Energy Transition; Heidrich, O.; Ford, A.C.; Dawson, R.J.; Manning, D.A.C.; Mohareb, E.; Raugei, M.; Baars, J.; Rajaeifar, M.A.; Sustainability (Switzerland) (June 2022); https://doi.org/10.3390/su14127120
Reclaimed and Up-Cycled Cathodes for Lithium-Ion Batteries; Gastol, D.; Marshall, J.; Cooper, E.; Mitchell, C.; Burnett, D.; Song, T.; Sommerville, R.; Middleton, B.; Crozier, M.; Smith, R.; Haig, S.; McElroy, C.R.; Van Dijk, N.; Croft, P.; Goodship, V.; Kendrick, E.; Global Challenges (June 2022); https://doi.org/10.1002/gch2.202200046
Quo vadis MFA? Integrated material flow analysis to support material efficiency; Baars, J.; Rajaeifar, M.A.; Heidrich, O.; Journal of Industrial Ecology (July 2022); https://doi.org/10.1111/jiec.13288
Tracking linear deformable objects using slicing method; Rastegarpanah, A.; Howard, R.; Stolkin, R.; Robotica (August 2022); https://doi.org/10.1017/S0263574721001065
The sustainable materials roadmap; Titirici, M.; Baird, S.G.; Sparks, T.D.; Yang, S.M.; Brandt-Talbot, A.; Hosseinaei, O.; Harper, D.P.; Parker, R.M.; Vignolini, S.; Berglund, L.A.; Li, Y.; Gao, H.-L.; Mao, L.-B.; Yu, S.-H.; Díez, N.; Ferrero, G.A.; Sevilla, M.; Szilágyi, P.i.; Stubbs, C.J.; Worch, J.C.; Huang, Y.; Luscombe, C.K.; Lee, K.-Y.; Luo, H.; Platts, M.J.; Tiwari, D.; Kovalevskiy, D.; Fermin, D.J.; Au, H.; Alptekin, H.; Crespo-Ribadeneyra, M.; Ting, V.P.; Fellinger, T.-P.; Barrio, J.; Westhead, O.; Roy, C.; Stephens, I.E.L.; Nicolae, S.A.; Sarma, S.C.; Oates, R.P.; Wang, C.-G.; Li, Z.; Loh, X.J.; Myers, R.J.; Heeren, N.; Grégoire, A.; Périssé, C.; Zhao, X.; Vodovotz, Y.; Earley, B.; Finnveden, G.; Björklund, A.; Harper, G.D.J.; Walton, A.; Anderson, P.A.; JPhys Materials (August 2022); https://doi.org/10.1088/2515-7639/ac4ee5 (See also LiSTAR)
Iodine speciation in deep eutectic solvents; Hartley, J.M.; Scott, S.; Dilruba, Z.; Lucio, A.J.; Bird, P.J.; Harris, R.C.; Jenkin, G.R.T.; Abbott, A.P.; Physical Chemistry Chemical Physics (Sept 2022); https://doi.org/10.1039/d2cp03185j
Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy; Nguyen-Tien, V.; Dai, Q.; Harper, G.D.J.; Anderson, P.A.; Elliott, R.J.R.; Applied Energy (Sept 2022); https://doi.org/10.1016/j.apenergy.2022.119230
Robot Vitals and Robot Health: Towards Systematically Quantifying Runtime Performance Degradation in Robots Under Adverse Conditions; Ramesh, A.; Stolkin, R.; Chiou, M.; IEEE Robotics and Automation Letters (Oct 2022); https://doi.org/10.1109/LRA.2022.3192612
The electric vehicle revolution: Critical material supply chains, trade and development; Jones, B.; Nguyen-Tien, V.; Elliott, R.J.R.; The World Economy (Oct 2022); https://doi.org/10.1111/twec.13345
Sustainable Upcycling of Spent Electric Vehicle Anodes into Solution-Processable Graphene Nanomaterials; Stafford, J.; Kendrick, E.; Industrial & Engineering Chemistry Research (Oct 2022); https://doi.org/10.1021/acs.iecr.2c02634
NEXTRODE – Electrode Manufacturing
The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries; Driscoll, E.H.; Hayward, E.C.; Patchett, R.; Anderson, P.A.; Slater, P.R.; Journal of Chemical Education (June 2020); https://doi.org/10.1021/acs.jchemed.0c00282 (See also Catmat, Degradation and ReLIB)
Automotive Battery Equalizers Based on Joint Switched-Capacitor and Buck-Boost Converters; Liu, K.; Yang, Z.; Tang, X.; Cao, W.; IEEE Transactions on Vehicular Technology (Nov 2020); https://doi.org/10.1109/TVT.2020.3019347
4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes; Ziesche, R.F.; Tremsin, A.S.; Huang, C.; Tan, C.; Grant, P.S.; Storm, M.; Brett, D.J.L.; Shearing, P.R.; Kockelmann, W.; Journal of Imaging (Dec 2020); https://doi.org/10.3390/jimaging6120136
Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates; Kazakli, M.; Mutch, G.A.; Triantafyllou, G.; Gil, A.G.; Li, T.; Wang, B.; Bailey, J.J.; Brett, D.J.L.; Shearing, P.R.; Li, K.; Metcalfe, I.; Journal of Membrane Science (Jan 2021); https://doi.org/10.1016/j.memsci.2020.118640
Multi-layered composite electrodes of high power Li4Ti5O12 and high capacity SnO2 for smart lithium ion storage; Lee, S.H.; Huang, C.; Grant, P.S.; Energy Storage Materials (June 2021); https://doi.org/10.1016/j.ensm.2021.02.010
Recent advances in acoustic diagnostics for electrochemical power systems; Majasan, J.O.; Robinson, J.B.; Owen, R.E.; Maier, M.; Radhakrishnan, A.N.P.; Pham, M.; Tranter, T.G.; Zhang, Y.; Shearing, P.R.; Brett, D.J.L.; JPhys Energy (June 2021); https://doi.org/10.1088/2515-7655/abfb4a (Join paper with LiSTAR)
Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: A review; Zhang, Y.S.; Zhu, H.L.; Yao, D.; Williams, P.T.; Wu, C.; Xu, D.; Hu, Q.; Manos, G.; Yu, L.; Zhao, M.; Shearing, P.R.; Brett, D.J.L.; Sustainable Energy and Fuels (June 2021); https://doi.org/10.1039/d1se00619c
Microstructural design of printed graphite electrodes for lithium-ion batteries; Gastol, D.; Capener, M.; Reynolds, C.; Constable, C.; Kendrick, E.; Materials and Design (July 2021); https://doi.org/10.1016/j.matdes.2021.109720
In Situ Ultrasound Acoustic Measurement of the Lithium-Ion Battery Electrode Drying Process; Zhang, Y.S.; Pallipurath Radhakrishnan, A.N.; Robinson, J.B.; Owen, R.E.; Tranter, T.G.; Kendrick, E.; Shearing, P.R.; Brett, D.J.L.; ACS Applied Materials and Interfaces (July 2021); https://doi.org/10.1021/acsami.1c10472
Multi-length scale microstructural design of lithium-ion battery electrodes for improved discharge rate performance; Lu, X.; Zhang, X.; Tan, C.; Heenan, T.M.M.; Lagnoni, M.; O’Regan, K.; Daemi, S.; Bertei, A.; Jones, H.G.; Hinds, G.; Park, J.; Kendrick, E.; Brett, D.J.L.; Shearing, P.R.; Energy and Environmental Science (Sept 2021); https://doi.org/10.1039/d1ee01388b
A review of metrology in lithium-ion electrode coating processes; Reynolds, C.D.; Slater, P.R.; Hare, S.D.; Simmons, M.J.H.; Kendrick, E.; Materials and Design (Nov 2021); https://doi.org/10.1016/j.matdes.2021.109971
Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics; Niri, M.F.; Liu, K.; Apachitei, G.; Ramirez, L.R.; Lain, M.; Widanage, D.; Marco, J.; Journal of Cleaner Production (Nov 2021); https://doi.org/10.1016/j.jclepro.2021.129272
A Review of Lithium-Ion Battery Electrode Drying: Mechanisms and Metrology; Zhang, Y.S.; Courtier, N.E.; Zhang, Z.; Liu, K.; Bailey, J.J.; Boyce, A.M.; Richardson, G.; Shearing, P.R.; Kendrick, E.; Brett, D.J.L.; Advanced Energy Materials (Nov 2021); https://doi.org/10.1002/aenm.202102233
Feature Analyses and Modeling of Lithium-Ion Battery Manufacturing Based on Random Forest Classification; Liu, K.; Hu, X.; Zhou, H.; Tong, L.; Widanage, W.D.; Marco, J.; IEEE/ASME Transactions on Mechatronics (Dec 2021); https://doi.org/10.1109/TMECH.2020.3049046
Formulation and manufacturing optimization of lithium-ion graphite-based electrodes via machine learning; Drakopoulos, S.X.; Gholamipour-Shirazi, A.; MacDonald, P.; Parini, R.C.; Reynolds, C.D.; Burnett, D.L.; Pye, B.; O’Regan, K.B.; Wang, G.; Whitehead, T.M.; Conduit, G.J.; Cazacu, A.; Kendrick, E.; Cell Reports Physical Science (Dec 2021); https://doi.org/10.1016/j.xcrp.2021.100683
Design of Scalable, Next-Generation Thick Electrodes: Opportunities and Challenges; Boyce, A.M.; Cumming, D.J.; Huang, C.; Zankowski, S.P.; Grant, P.S.; Brett, D.J.L.; Shearing, P.R.; ACS Nano (Dec 2021); https://doi.org/10.1021/acsnano.1c09687
Understanding the effect of coating-drying operating variables on electrode physical and electrochemical properties of lithium-ion batteries; Román-Ramírez, L.A.; Apachitei, G.; Faraji-Niri, M.; Lain, M.; Widanage, W.D.; Marco, J.; Journal of Power Sources (Dec 2021); https://doi.org/10.1016/j.jpowsour.2021.230689
In situ x-ray computed tomography of zinc-air primary cells during discharge: Correlating discharge rate to anode morphology; Hack, J.; Patel, D.; Bailey, J.J.; Iacoviello, F.; Shearing, P.R.; Brett, D.J.L.; JPhys Materials (Dec 2021); https://doi.org/10.1088/2515-7639/ac3f9a
Effective Ultrasound Acoustic Measurement to Monitor the Lithium-Ion Battery Electrode Drying Process with Various Coating Thicknesses; Zhang, Y.S.; Robinson, J.B.; Owen, R.E.; Radhakrishnan, A.N.P.; Li, J.; Majasan, J.O.; Shearing, P.R.; Kendrick, E.; Brett, D.J.L.; ACS Applied Materials and Interfaces (Dec 2021); https://doi.org/10.1021/acsami.1c22150
Determining the electrochemical transport parameters of sodium-ions in hard carbon composite electrodes; Ledwoch, D.; Komsiyska, L.; Hammer, E.-M.; Smith, K.; Shearing, P.R.; Brett, D.J.L.; Kendrick, E.; Electrochimica Acta (Jan 2022); https://doi.org/10.1016/j.electacta.2021.139481
Modelling the Impedance Response of Graded LiFePO4Cathodes for Li-Ion Batteries; Drummond, R.; Cheng, C.; Grant, P.S.; Duncan, S.R.; Journal of the Electrochemical Society (Jan 2022); https://doi.org/10.1149/1945-7111/ac48c6
Quantifying key factors for optimised manufacturing of Li-ion battery anode and cathode via artificial intelligence; Niri, M.F.; Liu, K.; Apachitei, G.; Román-Ramírez, L.A.A.; Lain, M.; Widanage, D.; Marco, J.; Energy and AI (Jan 2022); https://doi.org/10.1016/j.egyai.2021.100129
Experimental data of cathodes manufactured in a convective dryer at the pilot-plant scale, and charge and discharge capacities of half-coin lithium-ion cells; Román-Ramírez, L.A.; Apachitei, G.; Faraji-Niri, M.; Lain, M.; Widanage, D.; Marco, J.; Data in Brief (Feb 2022); https://doi.org/10.1016/j.dib.2021.107720
2022 roadmap on 3D printing for energy; Tarancón, A.; Esposito, V.; Torrell, M.; Di Vece, M.; Son, J.S.; Norby, P.; Barg, S.; Grant, P.S.; Vogelpoth, A.; Linnenbrink, S.; Brucki, M.; Schopphoven, T.; Gasser, A.; Persembe, E.; Koufou, D.; Kuhn, S.; Ameloot, R.; Hou, X.; Engelbrecht, K.; Bahl, C.R.H.; Pryds, N.; Wang, J.; Tsouris, C.; Miramontes, E.; Love, L.; Lai, C.; Sun, X.; Kærn, M.R.; Criscuolo, G.; Pedersen, D.B.; JPhys Energy (March 2022); https://doi.org/10.1088/2515-7655/ac483d
The effect of cell geometry and trigger method on the risks associated with thermal runaway of lithium-ion batteries; Walker, W.Q.; Cooper, K.; Hughes, P.; Doemling, I.; Akhnoukh, M.; Taylor, S.; Darst, J.; Billman, J.; Sharp, M.; Petrushenko, D.; Owen, R.; Pham, M.; Heenan, T.; Rack, A.; Magdsyuk, O.; Connolley, T.; Brett, D.; Shearing, P.; Finegan, D.; Darcy, E.; Journal of Power Sources (March 2022); https://doi.org/10.1016/j.jpowsour.2021.230645
Effect of coating operating parameters on electrode physical characteristics and final electrochemical performance of lithium-ion batteries; Román-Ramírez, L.A.; Apachitei, G.; Faraji-Niri, M.; Lain, M.; Widanage, D.; Marco, J.; International Journal of Energy and Environmental Engineering (March 2022); https://doi.org/10.1007/s40095-022-00481-w
Applications of advanced metrology for understanding the effects of drying temperature in the lithium-ion battery electrode manufacturing process; Zhang, Y.S.; Bailey, J.J.; Sun, Y.; Boyce, A.M.; Dawson, W.; Reynolds, C.D.; Zhang, Z.; Lu, X.; Grant, P.; Kendrick, E.; Shearing, P.R.; Brett, D.J.L.; Journal of Materials Chemistry A (April 2022); https://doi.org/10.1039/d2ta00861k
Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling; Boyce, A.M.; Martínez-Pañeda, E.; Wade, A.; Zhang, Y.S.; Bailey, J.J.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (April 2022); https://doi.org/10.1016/j.jpowsour.2022.231119 (See also MSM, Degradation and ReLIB)
Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography-the effect of calendering conditions; Ge, R.; Cumming, D.J.; Smith, R.M.; Powder Technology (May 2022); https://doi.org/10.1016/j.powtec.2022.117366
Low-voltage SEM of air-sensitive powders: From sample preparation to micro/nano analysis with secondary electron hyperspectral imaging; Nohl, J.F.; Farr, N.T.H.; Sun, Y.; Hughes, G.M.; Cussen, S.A.; Rodenburg, C.; Micron (May 2022); https://doi.org/10.1016/j.micron.2022.103234 (See also FutureCat)
Interpretable machine learning for battery capacities prediction and coating parameters analysis; Liu, K.; Niri, M.F.; Apachitei, G.; Lain, M.; Greenwood, D.; Marco, J.; Control Engineering Practice (July 2022); https://doi.org/10.1016/j.conengprac.2022.105202
Sequential Deposition of Integrated Cathode-Inorganic Separator-Anode Multilayers for High Performance Li-Ion Batteries; Evans, J.D.; Sun, Y.; Grant, P.S.; ACS Applied Materials and Interfaces (July 2022); https://doi.org/10.1021/acsami.2c03828
A continuum of physics-based lithium-ion battery models reviewed; Brosa Planella, F.; Ai, W.; Boyce, A.M.; Ghosh, A.; Korotkin, I.; Sahu, S.; Sulzer, V.; Timms, R.; Tranter, T.G.; Zyskin, M.; Cooper, S.J.; Edge, J.S.; Foster, J.M.; Marinescu, M.; Wu, B.; Richardson, G.; Progress in Energy (July 2022); https://doi.org/10.1088/2516-1083/ac7d31 (See also MSM)
Design of experiments applied to lithium-ion batteries: A literature review; Román-Ramírez, L.A.; Marco, J.; Applied Energy (August 2022); https://doi.org/10.1016/j.apenergy.2022.119305
Optimization of Electrode and Cell Design for Ultrafast-Charging Lithium-Ion Batteries Based on Molybdenum Niobium Oxide Anodes; Lakhdar, Y.; Geary, H.; Houck, M.; Gastol, D.; Groombridge, A.S.; Slater, P.R.; Kendrick, E.; ACS Applied Energy Materials (August 2022); https://doi.org/10.1021/acsaem.2c01814
Rheology and Structure of Lithium-Ion Battery Electrode Slurries; Reynolds, C.D.; Hare, S.D.; Slater, P.R.; Simmons, M.J.H.; Kendrick, E.; Energy Technology (August 2022); https://doi.org/10.1002/ente.202200545
Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review; Entwistle, J.; Ge, R.; Pardikar, K.; Smith, R.; Cumming, D.; Renewable and Sustainable Energy Reviews (Sept 2022); https://doi.org/10.1016/j.rser.2022.112624
Exploring the influence of porosity and thickness on lithium-ion battery electrodes using an image-based model; Boyce, A.M.; Lu, X.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Sept 2022); https://doi.org/10.1016/j.jpowsour.2022.231779 (See also MSM)
Extensional rheology of battery electrode slurries with water-based binders; Reynolds, C.D.; Lam, J.; Yang, L.; Kendrick, E.; Materials and Design (Oct 2022); https://doi.org/10.1016/j.matdes.2022.111104
Systematic analysis of the impact of slurry coating on manufacture of Li-ion battery electrodes via explainable machine learning; Faraji Niri, M.; Reynolds, C.; Román Ramírez, L.A.; Kendrick, E.; Marco, J.; Energy Storage Materials (Oct 2022); https://doi.org/10.1016/j.ensm.2022.06.036
The impact of calendering process variables on the impedance and capacity fade of lithium-ion cells: An explainable machine learning approach; M. Faraji Niri, G. Apachitei, M. Lain, M. Copley, J. Marco; Energy Technology (Oct 2022); https://doi.org/10.1002/ente.202200893
Insights into architecture, design and manufacture of electrodes for lithium-ion batteries; Zhu, P.; Slater, P.R.; Kendrick, E.; Materials and Design (Nov 2022); https://doi.org/10.1016/j.matdes.2022.111208
Machine learning for investigating the relative importance of electrodes’ N:P areal capacity ratio in the manufacturing of lithium-ion battery cells; Niri, M.F.; Apachitei, G.; Lain, M.; Copley, M.; Marco, J.; Journal of Power Sources (Nov 2022); https://doi.org/10.1016/j.jpowsour.2022.232124
Roadmap on Li-ion battery manufacturing research; P.S. Grant, D. Greenwood, K. Pardikar, R.Smith, T. Entwistle, L.A. Middlemiss, G. Murray, S.A. Cussen, M.J. Lain, M.J. Capener, M. Copley, C.D. Reynolds, S.D. Hare, M.J.H. Simmons, E. Kendrick, S.P. Zankowski, S. Wheeler, P. Zhu, P.R. Slater, Y. Zhang, A.R.T. Morrison, W. Dawson, J. Li, P.R. Shearing, D.J.L. Brett, G. Matthews, R. Ge, R. Drummond, E.C. Tredenick, C.Cheng, S.R. Duncan, A.M. Boyce, M. Faraji-Niri, J. Marco, L.A. Roman-Ramirez, C. Harper, P. Blackmore, T. Shelley, A. Mohsseni, D.J. Cumming; Journal of Physics Energy (Nov 2022); https://doi.org/10.1088/2515-7655/ac8e30 (See also FutureCat)
CATMAT – Next Generation Lithium-ion Cathode Materials
The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries; Driscoll, E.H.; Hayward, E.C.; Patchett, R.; Anderson, P.A.; Slater, P.R.; Journal of Chemical Education (June 2020); https://doi.org/10.1021/acs.jchemed.0c00282 (See also Degradation, Nextrode and ReLIB)
Chemical Trends in the Lattice Thermal Conductivity of Li(Ni, Mn, Co)O2(NMC) Battery Cathodes; Yang, H.; Savory, C.N.; Morgan, B.J.; Scanlon, D.O.; Skelton, J.M.; Walsh, A.; Chemistry of Materials (July 2020); https://doi.org/10.1021/acs.chemmater.0c02908
Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries; Davies, D.W.; Morgan, B.J.; Scanlon, D.O.; Walsh, A.; IOP SciNotes (July 2020); https://doi.org/10.1088/2633-1357/ab9750 (See also FutureCat)
The Role of Ni and Co in Suppressing O-Loss in Li-Rich Layered Cathodes; Boivin, E.; Guerrini, N.; House, R.A.; Lozano, J.G.; Jin, L.; Rees, G.J.; Somerville, J.W.; Kuss, C.; Roberts, M.R.; Bruce, P.G.; Advanced Functional Materials (August 2020); https://doi.org/10.1002/adfm.202003660 (See also SOLBAT)
First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk; House, R.A.; Rees, G.J.; Pérez-Osorio, M.A.; Marie, J.-J.; Boivin, E.; Robertson, A.W.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P.G.; Nature Energy (Sept 2020); https://doi.org/10.1038/s41560-020-00697-2
Using in-situ laboratory and synchrotron-based x-ray diffraction for lithium-ion batteries characterization: A review on recent developments; Llewellyn, A.V.; Matruglio, A.; Brett, D.J.L.; Jervis, R.; Shearing, P.R.; Condensed Matter (Nov 2020); https://doi.org/10.3390/condmat5040075 (See also LiSTAR and Characterisation)
Redox Chemistry and the Role of Trapped Molecular O2in Li-Rich Disordered Rocksalt Oxyfluoride Cathodes; Sharpe, R.; House, R.A.; Clarke, M.J.; Förstermann, D.; Marie, J.-J.; Cibin, G.; Zhou, K.-J.; Playford, H.Y.; Bruce, P.G.; Islam, M.S.; Journal of the American Chemical Society (Dec 2020); https://doi.org/10.1021/jacs.0c10270
Revisiting metal fluorides as lithium-ion battery cathodes; Hua, X.; Eggeman, A.S.; Castillo-Martínez, E.; Robert, R.; Geddes, H.S.; Lu, Z.; Pickard, C.J.; Meng, W.; Wiaderek, K.M.; Pereira, N.; Amatucci, G.G.; Midgley, P.A.; Chapman, K.W.; Steiner, U.; Goodwin, A.L.; Grey, C.P.; Nature Materials (Jan 2021); https://doi.org/10.1038/s41563-020-00893-1 (See also FutureCat)
The role of O2 in O-redox cathodes for Li-ion batteries; House, R.A.; Marie, J.-J.; Pérez-Osorio, M.A.; Rees, G.J.; Boivin, E.; Bruce, P.G.; Nature Energy (March 2021); https://doi.org/10.1038/s41560-021-00780-2
Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes; House, R.A.; Marie, J.-J.; Park, J.; Rees, G.J.; Agrestini, S.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P.G.; Nature Communications (May 2021); https://doi.org/10.1038/s41467-021-23154-4 (See also SOLBAT)
Direct Imaging of Oxygen Sub-lattice Deformation in Li-rich Cathode Material Using Electron Ptychography; Song, W.; Osorio, M.; Marie, J.; Liberti, E.; Luo, X.; O’Leary, C.; House, R.; Bruce, P.; Nellist, P. ; Microscopy and Microanalysis (July 2021); https://doi.org/10.1017/S1431927621009594 (See also SOLBAT)
Li2NiO2F a New Oxyfluoride Disordered Rocksalt Cathode Material; Xu, X.; Pi, L.; Marie, J.-J.; Rees, G.J.; Gong, C.; Pu, S.; House, R.A.; Robertson, A.W.; Bruce, P.G.; Journal of the Electrochemical Society (August 2021); https://doi.org/10.1149/1945-7111/ac1be1 (See also SOLBAT)
Detection of trapped molecular O2in a charged Li-rich cathode by Neutron PDF; House, R.A.; Playford, H.Y.; Smith, R.I.; Holter, J.; Griffiths, I.; Zhou, K.-J.; Bruce, P.G.; Energy and Environmental Science (Dec 2021); https://doi.org/10.1039/d1ee02237g (See also SOLBAT)
Pushing the boundaries of lithium battery research with atomistic modelling on different scales; Morgan, L.M.; Mercer, M.P.; Bhandari, A.; Peng, C.; Islam, M.M.; Yang, H.; Holland, J.; Coles, S.W.; Sharpe, R.; Walsh, A.; Morgan, B.J.; Kramer, D.; Saiful Islam, M.; Hoster, H.E.; Edge, J.S.; Skylaris, C.-K.; Progress in Energy (Dec 2021); https://doi.org/10.1088/2516-1083/ac3894
High-Voltage Stabilization of O3-Type Layered Oxide for Sodium-Ion Batteries by Simultaneous Tin Dual Modification; Song, T.; Chen, L.; Gastol, D.; Dong, B.; Marco, J.F.; Berry, F.; Slater, P.; Reed, D.; Kendrick, E.; Chemistry of Materials (April 2022); https://doi.org/10.1021/acs.chemmater.2c00522 (See also ReLIB)
Direct imaging of oxygen shifts associated with the oxygen redox of Li-rich layered oxides; Song, W.; Pérez-Osorio, M.A.; Marie, J.-J.; Liberti, E.; Luo, X.; O’Leary, C.; House, R.A.; Bruce, P.G.; Nellist, P.D.; Joule (May 2022); https://doi.org/10.1016/j.joule.2022.04.008 (See also SOLBAT)
Defect-driven anomalous transport in fast-ion conducting solid electrolytes; Poletayev, A.D.; Dawson, J.A.; Islam, M.S.; Lindenberg, A.M.; Nature Materials (July 2022); https://doi.org/10.1038/s41563-022-01316-z
Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes; McColl, K.; House, R.A.; Rees, G.J.; Squires, A.G.; Coles, S.W.; Bruce, P.G.; Morgan, B.J.; Islam, M.S.; Nature Communications (Sept 2022); https://doi.org/10.1038/s41467-022-32983-w
Surface reduction in lithium- and manganese-rich layered cathodes for lithium ion batteries drives voltage decay; B.Wen, F.N. Sayed, W.M. Dose, J.K. Morzy, Y. Sonaf, S. Nagendranb, C. Ducatide, C.P. Grey, M.F.L. De Volder; Journal of Materials Chemistry A (Sept 2022); https://doi.org/10.1039/D2TA04876K (See also FutureCat and Degradation)
Understanding intercalation chemistry for sustainable aqueous zinc–manganese dioxide batteries; Yuan, Y.; Sharpe, R.; He, K.; Li, C.; Saray, M.T.; Liu, T.; Yao, W.; Cheng, M.; Jin, H.; Wang, S.; Amine, K.; Shahbazian-Yassar, R.; Islam, M.S.; Lu, J.; Nature Sustainability (August 2022); https://doi.org/10.1038/s41893-022-00919-3
Corrosion suppression of aluminium current collectors within Li-ion cells using 3-methoxypropionitrile-based electrolytes; Yen, C.-H.; Neale, A.R.; Lim, J.; Bresser, D.; Hardwick, L.J.; Hu, C.-C.; Electrochimica Acta (Nov 2022); https://doi.org/10.1016/j.electacta.2022.141105
FutureCat – Next-generation Li-ion cathode materials
Evaluating lithium diffusion mechanisms in the complex spinel Li2NiGe3O8; Martin, D.Z.C.; Haworth, A.R.; Schmidt, W.L.; Baker, P.J.; Boston, R.; Johnston, K.E.; Reeves-Mclaren, N.; Physical Chemistry Chemical Physics (Oct 2019); https://doi.org/10.1039/c9cp02907a
Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials; McClelland, I.; Johnston, B.; Baker, P.J.; Amores, M.; Cussen, E.J.; Corr, S.A.; Annual Review of Materials Research (May 2020); https://doi.org/10.1146/annurev-matsci-110519-110507
Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries; Davies, D.W.; Morgan, B.J.; Scanlon, D.O.; Walsh, A.; IOP SciNotes (July 2020); https://doi.org/10.1088/2633-1357/ab9750 (See also Catmat)
In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation; McClelland, I.; Booth, S.G.; El-Shinawi, H.; Johnston, B.I.J.; Clough, J.; Guo, W.; Cussen, E.J.; Baker, P.J.; Corr, S.A.; ACS Applied Energy Materials (Jan 2021); https://doi.org/10.1021/acsaem.0c02722 (See also SOLBAT)
Revisiting metal fluorides as lithium-ion battery cathodes; Hua, X.; Eggeman, A.S.; Castillo-Martínez, E.; Robert, R.; Geddes, H.S.; Lu, Z.; Pickard, C.J.; Meng, W.; Wiaderek, K.M.; Pereira, N.; Amatucci, G.G.; Midgley, P.A.; Chapman, K.W.; Steiner, U.; Goodwin, A.L.; Grey, C.P.; Nature Materials (Jan 2021); https://doi.org/10.1038/s41563-020-00893-1 (See also Catmat)
Non-equilibrium metal oxides via reconversion chemistry in lithium-ion batteries; Hua, X.; Allan, P.K.; Gong, C.; Chater, P.A.; Schmidt, E.M.; Geddes, H.S.; Robertson, A.W.; Bruce, P.G.; Goodwin, A.L.; Nature Communications (Jan 2021); https://doi.org/10.1038/s41467-020-20736-6
Ab initio random structure searching for battery cathode materials; Lu, Z.; Zhu, B.; Shires, B.W.B.; Scanlon, D.O.; Pickard, C.J.; Journal of Chemical Physics (May 2021); https://doi.org/10.1063/5.0049309
Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks; Gittins, J.W.; Balhatchet, C.J.; Chen, Y.; Liu, C.; Madden, D.G.; Britto, S.; Golomb, M.J.; Walsh, A.; Fairen-Jimenez, D.; Dutton, S.E.; Forse, A.C.; Journal of Materials Chemistry A (June 2021); https://doi.org/10.1039/d1ta04026j
Extracting Interface Correlations from the Pair Distribution Function of Composite Materials; Geddes, H.; Hutchinson, H.D.; Ha, A.R.; Funnell, N.P.; Goodwin, A. ; Nanoscale (July 2021); https://doi.org/10.1039/D1NR01922H
Common workflows for computing material properties using different quantum engines; Huber, S.P.; Bosoni, E.; Bercx, M.; Bröder, J.; Degomme, A.; Dikan, V.; Eimre, K.; Flage-Larsen, E.; Garcia, A.; Genovese, L.; Gresch, D.; Johnston, C.; Petretto, G.; Poncé, S.; Rignanese, G.-M.; Sewell, C.J.; Smit, B.; Tseplyaev, V.; Uhrin, M.; Wortmann, D.; Yakutovich, A.V.; Zadoks, A.; Zarabadi-Poor, P.; Zhu, B.; Marzari, N.; Pizzi, G.; npj Computational Materials (August 2021); https://doi.org/10.1038/s41524-021-00594-6
Reliable protocols for calculating the specific energy and energy density of Li-Ion batteries; Son, Y.; Cha, H.; Jo, C.; Groombridge, A.S.; Lee, T.; Boies, A.; Cho, J.; De Volder, M.; Materials Today Energy (Sept 2021); https://doi.org/10.1016/j.mtener.2021.100838
Lithiation phase behaviors of metal oxide anodes and extra capacities; Hua, X.; Allan, P.K.; Geddes, H.S.; Castillo-Martínez, E.; Chater, P.A.; Dean, T.S.; Minelli, A.; Bruce, P.G.; Goodwin, A.L.; Cell Reports Physical Science (Sept 2021); https://doi.org/10.1016/j.xcrp.2021.100543
A Perspective on the Sustainability of Cathode Materials used in Lithium-Ion Batteries; Murdock, B.E.; Toghill, K.E.; Tapia-Ruiz, N.; Advanced Energy Materials (Sept 2021); https://doi.org/10.1002/aenm.202102028
Ion dynamics in fluoride-containing polyatomic anion cathodes by muon spectroscopy; Johnston, B.I.J.; Baker, P.J.; Cussen, S.A.; JPhys Materials (Sept 2021); https://doi.org/10.1088/2515-7639/ac22ba (See also Nexgenna)
Recovering local structure information from high-pressure total scattering experiments; Herlihy, A.; Geddes, H.S.; Sosso, G.C.; Bull, C.L.; Ridley, C.J.; Goodwin, A.L.; Senn, M.S.; Funnell, N.P.; Journal of Applied Crystallography (Sept 2021); https://doi.org/10.1107/S1600576721009420
Perspectives for next generation lithium-ion battery cathode materials; Booth, S.G.; Nedoma, A.J.; Anthonisamy, N.N.; Baker, P.J.; Boston, R.; Bronstein, H.; Clarke, S.J.; Cussen, E.J.; Daramalla, V.; De Volder, M.; Dutton, S.E.; Falkowski, V.; Fleck, N.A.; Geddes, H.S.; Gollapally, N.; Goodwin, A.L.; Griffin, J.M.; Haworth, A.R.; Hayward, M.A.; Hull, S.; Inkson, B.J.; Johnston, B.J.; Lu, Z.; MacManus-Driscoll, J.L.; Martínez De Irujo Labalde, X.; McClelland, I.; McCombie, K.; Murdock, B.; Nayak, D.; Park, S.; Pérez, G.E.; Pickard, C.J.; Piper, L.F.J.; Playford, H.Y.; Price, S.; Scanlon, D.O.; Stallard, J.C.; Tapia-Ruiz, N.; West, A.R.; Wheatcroft, L.; Wilson, M.; Zhang, L.; Zhi, X.; Zhu, B.; Cussen, S.A.; APL Materials (Oct 2021); https://doi.org/10.1063/5.0051092
Accelerating cathode material discovery through ab initio random structure searching; Zhu, B.; Lu, Z.; Pickard, C.J.; Scanlon, D.O.; APL Materials (Dec 2021); https://doi.org/10.1063/5.0076220
Identifying Hidden Li–Si–O Phases for Lithium-Ion Batteries via First-Principle Thermodynamic Calculations; Qu, J.; Ning, C.; Feng, X.; Yao, B.; Liu, B.; Lu, Z.; Wang, T.; Seh, Z.W.; Shi, S.; Zhang, Q.; Energy and Environmental Materials (Dec 2021); https://doi.org/10.1002/eem2.12329
A compliant and low-expansion 2-phase micro-architectured material, with potential application to solid-state Li-ion batteries; Zhao, Y.; Deshpande, V.S.; Fleck, N.A.; Journal of the Mechanics and Physics of Solids (Jan 2022); https://doi.org/10.1016/j.jmps.2021.104683 (See also SOLBAT)
Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid-state electrolyte; Liu, B.; Hu, Q.; Gao, T.; Liao, P.; Wen, Y.; Lu, Z.; Yang, J.; Shi, S.; Zhang, W.; Journal of Materiomics (Jan 2022); https://doi.org/10.1016/j.jmat.2021.05.006
Predicting Lithium Iron Oxysulfides for Battery Cathodes; Zhu, B.; Scanlon, D.O.; ACS Applied Energy Materials (Jan 2022); https://doi.org/10.1021/acsaem.1c03094
Conversion of Li2FeSbO5to the Fe(III)/Fe(V) Phase LiFeSbO5via Topochemical Lithium Extraction; Martínez De Irujo-Labalde, X.; Scrimshire, A.; Bingham, P.A.; Suard, E.; Hayward, M.A.; Chemistry of Materials (Feb 2022); https://doi.org/10.1021/acs.chemmater.2c00156
Pressure Tuning the Jahn-Teller Transition Temperature in NaNiO2; Nagle-Cocco, L.A.V.; Bull, C.L.; Ridley, C.J.; Dutton, S.E.; Inorganic Chemistry (March 2022); https://doi.org/10.1021/acs.inorgchem.1c03345
Mechanical properties of cathode materials for lithium-ion batteries; Stallard, J.C.; Wheatcroft, L.; Booth, S.G.; Boston, R.; Corr, S.A.; De Volder, M.F.L.; Inkson, B.J.; Fleck, N.A.; Joule (April 2022); https://doi.org/10.1016/j.joule.2022.04.001
Lithium-based vertically aligned nancomposite films incorporating LixLa0.32(Nb0.7Ti0.32)O3electrolyte with high Li+ion conductivity; Lovett, A.J.; Kursumovic, A.; Dutton, S.; Qi, Z.; He, Z.; Wang, H.; MacManus-Driscoll, J.L.; APL Materials (May 2022); https://doi.org/10.1063/5.0086844
Low-voltage SEM of air-sensitive powders: From sample preparation to micro/nano analysis with secondary electron hyperspectral imaging; Nohl, J.F.; Farr, N.T.H.; Sun, Y.; Hughes, G.M.; Cussen, S.A.; Rodenburg, C.; Micron (May 2022); https://doi.org/10.1016/j.micron.2022.103234 (See also Nextrode)
Misreported non-aqueous reference potentials: The battery research endemic; Murdock, B.E.; Armstrong, C.G.; Smith, D.E.; Tapia-Ruiz, N.; Toghill, K.E.; Joule (May 2022); https://doi.org/10.1016/j.joule.2022.04.009
Effect of Lithiation upon the Shear Strength of NMC811 Single Crystals; Stallard, J.C.; Vema, S.; Hall, D.S.; Dennis, A.R.; Penrod, M.E.; Grey, C.P.; Deshpande, V.S.; Fleck, N.A.; Journal of the Electrochemical Society (April 2022); https://doi.org/10.1149/1945-7111/ac6244 (See also Degradation)
Surface reduction in lithium- and manganese-rich layered cathodes for lithium ion batteries drives voltage decay; B.Wen, F.N. Sayed, W.M. Dose, J.K. Morzy, Y. Sonaf, S. Nagendranb, C. Ducatide, C.P. Grey, M.F.L. De Volder; Journal of Materials Chemistry A (Sept 2022); https://doi.org/10.1039/D2TA04876K (See also Catmat and Degradation)
Cathodes for Mg batteries: A condensed review; Pryke, J.J.; Kennard, R.M.; Cussen, S.A.; Energy Reports (Nov 2022); https://doi.org/10.1016/j.egyr.2022.07.124
Co-precipitation synthesis of nickel-rich cathodes for Li-ion batteries; Entwistle, T.; Sanchez-Perez, E.; Murray, G.J.; Anthonisamy, N.; Cussen, S.A.; Energy Reports (Nov 2022); https://doi.org/10.1016/j.egyr.2022.06.110
Roadmap on Li-ion battery manufacturing research; P.S. Grant, D. Greenwood, K. Pardikar, R.Smith, T. Entwistle, L.A. Middlemiss, G. Murray, S.A. Cussen, M.J. Lain, M.J. Capener, M. Copley, C.D. Reynolds, S.D. Hare, M.J.H. Simmons, E. Kendrick, S.P. Zankowski, S. Wheeler, P. Zhu, P.R. Slater, Y. Zhang, A.R.T. Morrison, W. Dawson, J. Li, P.R. Shearing, D.J.L. Brett, G. Matthews, R. Ge, R. Drummond, E.C. Tredenick, C.Cheng, S.R. Duncan, A.M. Boyce, M. Faraji-Niri, J. Marco, L.A. Roman-Ramirez, C. Harper, P. Blackmore, T. Shelley, A. Mohsseni, D.J. Cumming; Journal of Physics Energy (Nov 2022); https://doi.org/10.1088/2515-7655/ac8e30 (See also Nextrode)
Solid-state NMR studies of coatings and interfaces in batteries; A.R. Haworth; C.W. Cook; J.M.Griffin; Current Opinion in Colloid & Interface Science (Dec 2022); https://doi.org/10.1016/j.cocis.2022.101638
Beyond Lithium Ion
SOLBAT: Solid-state metal anode batteries
Selective and Facile Synthesis of Sodium Sulfide and Sodium Disulfide Polymorphs; El-Shinawi, H.; Cussen, E.J.; Corr, S.A.; Inorganic Chemistry (June 2018); https://doi.org/10.1021/acs.inorgchem.8b00776
Na1.5La1.5TeO6: Na+ conduction in a novel Na-rich double perovskite; Amores, M.; Baker, P.J.; Cussen, E.J.; Corr, S.A.; Chemical Communications (August 2018); https://doi.org/10.1039/c8cc03367f
Lithium Transport in Li4.4 M0.4 M′0.6S4 (M = Al3+, Ga3+, and M′ = Ge4+, Sn4+): Combined Crystallographic, Conductivity, Solid State NMR, and Computational Studies; Leube, B.T.; Inglis, K.K.; Carrington, E.J.; Sharp, P.M.; Shin, J.F.; Neale, A.R.; Manning, T.D.; Pitcher, M.J.; Hardwick, L.J.; Dyer, M.S.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Chemistry of Materials (Sept 2018); https://doi.org/10.1021/acs.chemmater.8b03175
Low-Dose Aberration-Free Imaging of Li-Rich Cathode Materials at Various States of Charge Using Electron Ptychography; Lozano, J.G.; Martinez, G.T.; Jin, L.; Nellist, P.D.; Bruce, P.G.; Nano Letters (Sept 2018); https://doi.org/10.1021/acs.nanolett.8b02718
Thermal Degradation of Monolayer MoS 2 on SrTiO 3 Supports ; Chen, P.; Xu, W.; Gao, Y.; Holdway, P.; Warner, J.H.; Castell, M.R.; Journal of Physical Chemistry C (Jan 2019); https://doi.org/10.1021/acs.jpcc.8b11298
Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm−1 and its primary applications in symmetric battery cells; Ma, Q.; Tsai, C.-L.; Wei, X.-K.; Heggen, M.; Tietz, F.; Irvine, J.T.S.; Journal of Materials Chemistry A (Feb 2019); https://doi.org/10.1039/c9ta00048h
7 Li NMR Chemical Shift Imaging to Detect Microstructural Growth of Lithium in All-Solid-State Batteries ; Marbella, L.E.; Zekoll, S.; Kasemchainan, J.; Emge, S.P.; Bruce, P.G.; Grey, C.P.; Chemistry of Materials (April 2019); https://doi.org/10.1021/acs.chemmater.8b04875
What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?; House, R.A.; Maitra, U.; Jin, L.; Lozano, J.G.; Somerville, J.W.; Rees, N.H.; Naylor, A.J.; Duda, L.C.; Massel, F.; Chadwick, A.V.; Ramos, S.; Pickup, D.M.; McNally, D.E.; Lu, X.; Schmitt, T.; Roberts, M.R.; Bruce, P.G.; Chemistry of Materials (April 2019); https://doi.org/10.1021/acs.chemmater.9b00227
Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries; Cowan, A.J.; Hardwick, L.J.; Annual Review of Analytical Chemistry (April 2019); https://doi.org/10.1146/annurev-anchem-061318-115303 (See also Degradation)
Nature of the “z”-phase in layered Na-ion battery cathodes; Somerville, J.W.; Sobkowiak, A.; Tapia-Ruiz, N.; Billaud, J.; Lozano, J.G.; House, R.A.; Gallington, L.C.; Ericsson, T.; Häggström, L.; Roberts, M.R.; Maitra, U.; Bruce, P.G.; Energy and Environmental Science (May 2019); https://doi.org/10.1039/c8ee02991a
Easy access to oxygenated block polymers via switchable catalysis; Stößer, T.; Sulley, G.S.; Gregory, G.L.; Williams, C.K.; Nature Communications (June 2019); https://doi.org/10.1038/s41467-019-10481-w
Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells; Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G.O.; Marrow, J.; Bruce, P.G.; Nature Materials (July 2019); https://doi.org/10.1038/s41563-019-0438-9
Co-spray printing of LiFePO4 and PEO-Li1.5Al0.5Ge1.5(PO4)3 hybrid electrodes for all-solid-state Li-ion battery applications; Bu, J.; Leung, P.; Huang, C.; Lee, S.H.; Grant, P.S.; Journal of Materials Chemistry A (August 2019); https://doi.org/10.1039/c9ta03824h
Dental Resin Monomer Enables Unique NbO2/Carbon Lithium-Ion Battery Negative Electrode with Exceptional Performance; Ji, Q.; Gao, X.; Zhang, Q.; Jin, L.; Wang, D.; Xia, Y.; Yin, S.; Xia, S.; Hohn, N.; Zuo, X.; Wang, X.; Xie, S.; Xu, Z.; Ma, L.; Chen, L.; Chen, G.Z.; Zhu, J.; Hu, B.; Müller-Buschbaum, P.; Bruce, P.G.; Cheng, Y.-J.; Advanced Functional Materials (August 2019); https://doi.org/10.1002/adfm.201904961
Dendrite nucleation in lithium-conductive ceramics; Li, G.; Monroe, C.W.; Physical Chemistry Chemical Physics (Sept 2019); https://doi.org/10.1039/c9cp03884a
Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes; Naylor, A.J.; Makkos, E.; Maibach, J.; Guerrini, N.; Sobkowiak, A.; Björklund, E.; Lozano, J.G.; Menon, A.S.; Younesi, R.; Roberts, M.R.; Edström, K.; Islam, M.S.; Bruce, P.G.; Journal of Materials Chemistry A (Sept 2019); https://doi.org/10.1039/c9ta09019c
Single-Step Spray Printing of Symmetric All-Organic Solid-State Batteries Based on Porous Textile Dye Electrodes; Leung, P.; Bu, J.; Quijano Velasco, P.; Roberts, M.R.; Grobert, N.; Grant, P.S.; Advanced Energy Materials (Sept 2019); https://doi.org/10.1002/aenm.201901418
A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals; Al-Masri, D.; Yunis, R.; Zhu, H.; Jin, L.; Bruce, P.; Hollenkamp, A.F.; Pringle, J.M.; Journal of Materials Chemistry A (Oct 2019); https://doi.org/10.1039/c9ta11175a
A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li-S batteries; El-Shinawi, H.; Cussen, E.J.; Corr, S.A.; Nanoscale (Oct 2019); https://doi.org/10.1039/c9nr06239d
Computationally Guided Discovery of the Sulfide Li3AlS3 in the Li-Al-S Phase Field: Structure and Lithium Conductivity; Gamon, J.; Duff, B.B.; Dyer, M.S.; Collins, C.; Daniels, L.M.; Surta, T.W.; Sharp, P.M.; Gaultois, M.W.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Chemistry of Materials (Oct 2019); https://doi.org/10.1021/acs.chemmater.9b03230
Is Nitrogen Present in Li3N·P2S5 Solid Electrolytes Produced by Ball Milling?; Hartley, G.O.; Jin, L.; Bergner, B.J.; Jolly, D.S.; Rees, G.J.; Zekoll, S.; Ning, Z.; Pateman, A.T.R.; Holc, C.; Adamson, P.; Bruce, P.G.; Chemistry of Materials (Nov 2019); https://doi.org/10.1021/acs.chemmater.9b01853
Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes; House, R.A.; Maitra, U.; Pérez-Osorio, M.A.; Lozano, J.G.; Jin, L.; Somerville, J.W.; Duda, L.C.; Nag, A.; Walters, A.; Zhou, K.-J.; Roberts, M.R.; Bruce, P.G.; Nature (Dec 2019); https://doi.org/10.1038/s41586-019-1854-3
Sodium/Na β″ Alumina Interface: Effect of Pressure on Voids; Spencer Jolly, D.; Ning, Z.; Darnbrough, J.E.; Kasemchainan, J.; Hartley, G.O.; Adamson, P.; Armstrong, D.E.J.; Marrow, J.; Bruce, P.G.; ACS Applied Materials and Interfaces (Dec 2019); https://doi.org/10.1021/acsami.9b17786
The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte; Liu, J.; Gao, X.; Hartley, G.O.; Rees, G.J.; Gong, C.; Richter, F.H.; Janek, J.; Xia, Y.; Robertson, A.W.; Johnson, L.R.; Bruce, P.G.; Joule (Jan 2020); https://doi.org/10.1016/j.joule.2019.10.001
Shapes of epitaxial gold nanocrystals on SrTiO3 substrates; Chen, P.; Murugappan, K.; Castell, M.R.; Physical Chemistry Chemical Physics (Feb 2020); https://doi.org/10.1039/c9cp06801e
Switchable Catalysis Improves the Properties of CO2-Derived Polymers: Poly(cyclohexene carbonate- b-ϵ-decalactone- b-cyclohexene carbonate) Adhesives, Elastomers, and Toughened Plastics; Sulley, G.S.; Gregory, G.L.; Chen, T.T.D.; Peña Carrodeguas, L.; Trott, G.; Santmarti, A.; Lee, K.-Y.; Terrill, N.J.; Williams, C.K.; Journal of the American Chemical Society (Feb 2020); https://doi.org/10.1021/jacs.9b13106
Observation of Interfacial Degradation of Li6PS5Cl against Lithium Metal and LiCoO2 via In Situ Electrochemical Raman Microscopy; Zhou, Y.; Doerrer, C.; Kasemchainan, J.; Bruce, P.G.; Pasta, M.; Hardwick, L.J.; Batteries and Supercaps (Feb 2020); https://doi.org/10.1002/batt.201900218
Mechanics of the Ideal Double-Layer Capacitor; Monroe, C.W.; Journal of the Electrochemical Society (Feb 2020); https://doi.org/10.1149/1945-7111/ab6b04 (See also MSM)
Multiscale Lithium-Battery Modeling from Materials to Cells; Li, G.; Monroe, C.W.; Annual Review of Chemical and Biomolecular Engineering (March 2020); https://doi.org/10.1146/annurev-chembioeng-012120-083016
Emerging X-ray imaging technologies for energy materials; Cao, C.; Toney, M.F.; Sham, T.-K.; Harder, R.; Shearing, P.R.; Xiao, X.; Wang, J.; Materials Today (April 2020); https://doi.org/10.1016/j.mattod.2019.08.011 (See also Degradation)
Dendrites as climbing dislocations in ceramic electrolytes: Initiation of growth; Shishvan, S.S.; Fleck, N.A.; McMeeking, R.M.; Deshpande, V.S.; Journal of Power Sources (April 2020); https://doi.org/10.1016/j.jpowsour.2020.227989
Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization; Gregory, G.L.; Sulley, G.S.; Carrodeguas, L.P.; Chen, T.T.D.; Santmarti, A.; Terrill, N.J.; Lee, K.-Y.; Williams, C.K.; Chemical Science (May 2020); https://doi.org/10.1039/d0sc00463d
2020 roadmap on solid-state batteries; Pasta, M.; Armstrong, D.; Brown, Z.L.; Bu, J.; Castell, M.R.; Chen, P.; Cocks, A.; Corr, S.A.; Cussen, E.J.; Darnbrough, E.; Deshpande, V.; Doerrer, C.; Dyer, M.S.; El-Shinawi, H.; Fleck, N.; Grant, P.; Gregory, G.L.; Grovenor, C.; Hardwick, L.J.; Irvine, J.T.S.; Lee, H.J.; Li, G.; Liberti, E.; McClelland, I.; Monroe, C.; Nellist, P.D.; Shearing, P.R.; Shoko, E.; Song, W.; Jolly, D.S.; Thomas, C.I.; Turrell, S.J.; Vestli, M.; Williams, C.K.; Zhou, Y.; Bruce, P.G.; JPhys Energy (August 2020); https://doi.org/10.1088/2515-7655/ab95f4
The Role of Ni and Co in Suppressing O-Loss in Li-Rich Layered Cathodes; Boivin, E.; Guerrini, N.; House, R.A.; Lozano, J.G.; Jin, L.; Rees, G.J.; Somerville, J.W.; Kuss, C.; Roberts, M.R.; Bruce, P.G.; Advanced Functional Materials (August 2020); https://doi.org/10.1002/adfm.202003660 (See also Catmat)
Growth rate of lithium filaments in ceramic electrolytes; Shishvan, S.S.; Fleck, N.A.; McMeeking, R.M.; Deshpande, V.S.; Acta Materialia (Sept 2020); https://doi.org/10.1016/j.actamat.2020.06.060
Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness; Zuo, X.; Wen, Y.; Qiu, Y.; Cheng, Y.-J.; Yin, S.; Ji, Q.; You, Z.; Zhu, J.; Müller-Buschbaum, P.; Ma, L.; Bruce, P.G.; Xia, Y.; ACS Applied Materials and Interfaces (Sept 2020); https://doi.org/10.1021/acsami.0c12747
Bio-based and Degradable Block Polyester Pressure-Sensitive Adhesives; Chen, T.T.D.; Carrodeguas, L.P.; Sulley, G.S.; Gregory, G.L.; Williams, C.K.; Angewandte Chemie – International Edition (Sept 2020); https://doi.org/10.1002/anie.202006807
First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk; House, R.A.; Rees, G.J.; Pérez-Osorio, M.A.; Marie, J.-J.; Boivin, E.; Robertson, A.W.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P.G.; Nature Energy (Sept 2020); https://doi.org/10.1038/s41560-020-00697-2 (See also Catmat)
Electrochemo-Mechanical Properties of Red Phosphorus Anodes in Lithium, Sodium, and Potassium Ion Batteries; Capone, I.; Aspinall, J.; Darnbrough, E.; Zhao, Y.; Wi, T.-U.; Lee, H.-W.; Pasta, M.; Matter (Oct 2020); https://doi.org/10.1016/j.matt.2020.09.017
Imaging Sodium Dendrite Growth in All-Solid-State Sodium Batteries Using 23Na T2-Weighted Magnetic Resonance Imaging; Rees, G.J.; Spencer Jolly, D.; Ning, Z.; Marrow, T.J.; Pavlovskaya, G.E.; Bruce, P.G.; Angewandte Chemie – International Edition (Oct 2020); https://doi.org/10.1002/anie.202013066
Fabrication of Li1+xAlxGe2-x(PO4)3 thin films by sputtering for solid electrolytes; Mousavi, T.; Chen, X.; Doerrer, C.; Jagger, B.; Speller, S.C.; Grovenor, C.R.M.; Solid State Ionics (Oct 2020); https://doi.org/10.1016/j.ssi.2020.115397
High elasticity, chemically recyclable, thermoplastics from bio-based monomers: Carbon dioxide, limonene oxide and ϵ-decalactone; Carrodeguas, L.P.; Chen, T.T.D.; Gregory, G.L.; Sulley, G.S.; Williams, C.K.; Green Chemistry (Nov 2020); https://doi.org/10.1039/d0gc02295k
Li1.5La1.5 MO6 (M = W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries; Amores, M.; El-Shinawi, H.; McClelland, I.; Yeandel, S.R.; Baker, P.J.; Smith, R.I.; Playford, H.Y.; Goddard, P.; Corr, S.A.; Cussen, E.J.; Nature Communications (Dec 2020); https://doi.org/10.1038/s41467-020-19815-5
The Earth Mover’s Distance as a Metric for the Space of Inorganic Compositions; Hargreaves, C.J.; Dyer, M.S.; Gaultois, M.W.; Kurlin, V.A.; Rosseinsky, M.J.; Chemistry of Materials (Dec 2020); https://doi.org/10.1021/acs.chemmater.0c03381
3D Imaging of Lithium Protrusions in Solid-State Lithium Batteries using X-Ray Computed Tomography; Hao, S.; Bailey, J.J.; Iacoviello, F.; Bu, J.; Grant, P.S.; Brett, D.J.L.; Shearing, P.R.; Advanced Functional Materials (Dec 2020); https://doi.org/10.1002/adfm.202007564
Carbon-emcoating architecture boosts lithium storage of Nb2O5; Ji, Q.; Xu, Z.; Gao, X.; Cheng, Y.-J.; Wan, X.; Zuo, X.; Chen, G.Z.; Hu, B.; Zhu, J.; Bruce, P.G.; Xia, Y.; Science China Materials (Dec 2020); https://doi.org/10.1007/s40843-020-1532-0
Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy; Gong, C.; Pu, S.D.; Gao, X.; Yang, S.; Liu, J.; Ning, Z.; Rees, G.J.; Capone, I.; Pi, L.; Liu, B.; Hartley, G.O.; Fawdon, J.; Luo, J.; Pasta, M.; Grovenor, C.R.M.; Bruce, P.G.; Robertson, A.W.; Advanced Energy Materials (Jan 2021); https://doi.org/10.1002/aenm.202003118
In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation; McClelland, I.; Booth, S.G.; El-Shinawi, H.; Johnston, B.I.J.; Clough, J.; Guo, W.; Cussen, E.J.; Baker, P.J.; Corr, S.A.; ACS Applied Energy Materials (Jan 2021); https://doi.org/10.1021/acsaem.0c02722 (See also FutureCat)
Ordered LiNi0.5Mn1.5O4 Cathode in Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte: Importance of the Cathode-Electrolyte Interphase; Lee, H.J.; Brown, Z.; Zhao, Y.; Fawdon, J.; Song, W.; Lee, J.H.; Ihli, J.; Pasta, M.; Chemistry of Materials (Feb 2021); https://doi.org/10.1021/acs.chemmater.0c04014
Thermodynamic factors for locally non-neutral, concentrated electrolytic fluids; Goyal, P.; Monroe, C.W.; Electrochimica Acta (March 2021); https://doi.org/10.1016/j.electacta.2020.137638
2021 roadmap on lithium sulfur batteries; Robinson, J.B.; Xi, K.; Kumar, R.V.; Ferrari, A.C.; Au, H.; Titirici, M.M.; Puerto, A.P.; Kucernak, A.; Fitch, S.D.S.; Araez, N.G.; Brown, Z.L.; Pasta, M.; Furness, L.; Kibler, A.J.; Walsh, D.A.; Johnson, L.R.; Holc, C.; Newton, G.N.; Champness, N.R.; Markoulidis, F.; Crean, C.; Slade, R.C.T.; Andritsos, E.I.; Cai, Q.; Babar, S.; Zhang, T.; Lekakou, C.; Kulkarni, N.; Rettie, A.J.E.; Jervis, R.; Cornish, M.; Marinescu, M.; Offer, G.; Li, Z.; Bird, L.; Grey, C.P.; Chhowalla, M.; Lecce, D.D.; Owen, R.E.; Miller, T.S.; Brett, D.J.L.; Liatard, S.; Ainsworth, D.; Shearing, P.R.; JPhys Energy (March 2021); https://doi.org/10.1088/2515-7655/abdb9a (See also LiSTAR)
The initiation of void growth during stripping of Li electrodes in solid electrolyte cells; Shishvan, S.S.; Fleck, N.A.; Deshpande, V.S.; Journal of Power Sources (March 2021); https://doi.org/10.1016/j.jpowsour.2020.229437
Li6SiO4Cl2: A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking; Morscher, A.; Dyer, M.S.; Duff, B.B.; Han, G.; Gamon, J.; Daniels, L.M.; Dang, Y.; Surta, T.W.; Robertson, C.M.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Chemistry of Materials (March 2021); https://doi.org/10.1021/acs.chemmater.1c00157
Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells; Ning, Z.; Jolly, D.S.; Li, G.; De Meyere, R.; Pu, S.D.; Chen, Y.; Kasemchainan, J.; Ihli, J.; Gong, C.; Liu, B.; Melvin, D.L.R.; Bonnin, A.; Magdysyuk, O.; Adamson, P.; Hartley, G.O.; Monroe, C.W.; Marrow, T.J.; Bruce, P.G.; Nature Materials (April 2021); https://doi.org/10.1038/s41563-021-00967-8
Tracking lithium penetration in solid electrolytes in 3D by in-situ synchrotron X-ray computed tomography; Hao, S.; Daemi, S.R.; Heenan, T.M.M.; Du, W.; Tan, C.; Storm, M.; Rau, C.; Brett, D.J.L.; Shearing, P.R.; Nano Energy (April 2021); https://doi.org/10.1016/j.nanoen.2021.105744
Modeling Lithium Transport and Electrodeposition in Ionic-Liquid Based Electrolytes; Li, G.; Monroe, C.W.; Frontiers in Energy Research (May 2021); https://doi.org/10.3389/fenrg.2021.660081
Bulk O2 formation and Mg displacement explain O-redox in Na0.67Mn0.72Mg0.28O2; Boivin, E.; House, R.A.; Pérez-Osorio, M.A.; Marie, J.-J.; Maitra, U.; Rees, G.J.; Bruce, P.G.; Joule (May 2021); https://doi.org/10.1016/j.joule.2021.04.006
Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes; House, R.A.; Marie, J.-J.; Park, J.; Rees, G.J.; Agrestini, S.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P.G.; Nature Communications (May 2021); https://doi.org/10.1038/s41467-021-23154-4 (See also Catmat)
Temperature Dependence of Lithium Anode Voiding in Argyrodite Solid-State Batteries; Spencer Jolly, D.; Ning, Z.; Hartley, G.O.; Liu, B.; Melvin, D.L.R.; Adamson, P.; Marrow, J.; Bruce, P.G.; ACS Applied Materials and Interfaces (May 2021); https://doi.org/10.1021/acsami.1c06706
Development of sputtered nitrogen-doped Li1+xAlxGe2-x(PO4)3 thin films for solid state batteries; Mousavi, T.; Slattery, I.; Jagger, B.; Liu, J.; Speller, S.; Grovenor, C.; Solid State Ionics (June 2021); https://doi.org/10.1016/j.ssi.2021.115613
Characterising lithium-ion electrolytes via operando Raman microspectroscopy; Fawdon, J.; Ihli, J.; Mantia, F.L.; Pasta, M.; Nature Communications (June 2021); https://doi.org/10.1038/s41467-021-24297-0 (See also LiSTAR)
2021 roadmap for sodium-ion batteries; Tapia-Ruiz, N.; Armstrong, A.R.; Alptekin, H.; Amores, M.A.; Au, H.; Barker, J.; Boston, R.; Brant, W.R.; Brittain, J.M.; Chen, Y.; Chhowalla, M.; Choi, Y.-S.; Costa, S.I.R.; Ribadeneyra, M.C.; Cussen, S.A.; Cussen, E.J.; David, W.I.F.; Desai, A.V.; Dickson, S.A.M.; Eweka, E.I.; Forero-Saboya, J.D.; Grey, C.P.; Griffin, J.M.; Gross, P.; Hua, X.; Irvine, J.T.S.; Johansson, P.; Jones, M.O.; Karlsmo, M.; Kendrick, E.; Kim, E.; Kolosov, O.V.; Li, Z.; Mertens, S.F.L.; Mogensen, R.; Monconduit, L.; Morris, R.E.; Naylor, A.J.; Nikman, S.; O’Keefe, C.A.; Ould, D.M.C.; Palgrave, R.G.; Poizot, P.; Ponrouch, A.; Renault, S.; Reynolds, E.M.; Rudola, A.; Sayers, R.; Scanlon, D.O.; Sen, S.; Seymour, V.R.; Silván, B.; Sougrati, M.T.; Stievano, L.; Stone, G.S.; Thomas, C.I.; Titirici, M.-M.; Tong, J.; Wood, T.J.; Wright, D.S.; Younesi, R.; JPhys Energy (July 2021); https://doi.org/10.1088/2515-7655/ac01ef (See also Nexgenna)
High Energy Density Single-Crystal NMC/Li6PS5Cl Cathodes for All-Solid-State Lithium-Metal Batteries; Doerrer, C.; Capone, I.; Narayanan, S.; Liu, J.; Grovenor, C.R.M.; Pasta, M.; Grant, P.S.; ACS Applied Materials and Interfaces (July 2021); https://doi.org/10.1021/acsami.1c07952
Direct Imaging of Oxygen Sub-lattice Deformation in Li-rich Cathode Material Using Electron Ptychography; Song, W.; Osorio, M.; Marie, J.; Liberti, E.; Luo, X.; O’Leary, C.; House, R.; Bruce, P.; Nellist, P. ; Microscopy and Microanalysis (July 2021); https://doi.org/10.1017/S1431927621009594 (See also Catmat)
Polymorph of LiAlP2O7: Combined Computational, Synthetic, Crystallographic, and Ionic Conductivity Study; Shoko, E.; Dang, Y.; Han, G.; Duff, B.B.; Dyer, M.S.; Daniels, L.M.; Chen, R.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Inorganic Chemistry (August 2021); https://doi.org/10.1021/acs.inorgchem.1c01396
Li2NiO2F a New Oxyfluoride Disordered Rocksalt Cathode Material; Xu, X.; Pi, L.; Marie, J.-J.; Rees, G.J.; Gong, C.; Pu, S.; House, R.A.; Robertson, A.W.; Bruce, P.G.; Journal of the Electrochemical Society (August 2021); https://doi.org/10.1149/1945-7111/ac1be1 (See also Catmat)
A red phosphorus-graphite composite as anode material for potassium-ion batteries; Capone, I.; Aspinall, J.; Lee, H.J.; Xiao, A.W.; Ihli, J.; Pasta, M.; Materials Today Energy (Sept 2021); https://doi.org/10.1016/j.mtener.2021.100840
Transport of secondary carriers in a solid lithium-ion conductor; Li, G.; Monroe, C.W.; Electrochimica Acta (Sept 2021); https://doi.org/10.1016/j.electacta.2021.138563
Catalytic Synergy Using Al(III) and Group 1 Metals to Accelerate Epoxide and Anhydride Ring-Opening Copolymerizations; Diment, W.T.; Gregory, G.L.; Kerr, R.W.F.; Phanopoulos, A.; Buchard, A.; Williams, C.K.; ACS Catalysis (Sept 2021); https://doi.org/10.1021/acscatal.1c04020
3D X-Ray Characterization of Energy Storage and Conversion Devices; Tan, C.; Leach, A.; Heenan, T.M.M.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Advances in Sustainable Energy (Sept 2021); https://doi.org/10.1007/978-3-030-74406-9_18 (See also Degradation)
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry; Vasylenko, A.; Gamon, J.; Duff, B.B.; Gusev, V.V.; Daniels, L.M.; Zanella, M.; Shin, J.F.; Sharp, P.M.; Morscher, A.; Chen, R.; Neale, A.R.; Hardwick, L.J.; Claridge, J.B.; Blanc, F.; Gaultois, M.W.; Dyer, M.S.; Rosseinsky, M.J.; Nature Communications (Sept 2021); https://doi.org/10.1038/s41467-021-25343-7
Optimization of a potential manufacturing process for thin-film LiCoO2 cathodes; Turrell, S.J.; Zekoll, S.; Liu, J.; Grovenor, C.R.M.; Speller, S.C.; Thin Solid Films (Oct 2021); https://doi.org/10.1016/j.tsf.2021.138888
Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability; Han, G.; Vasylenko, A.; Neale, A.R.; Duff, B.B.; Chen, R.; Dyer, M.S.; Dang, Y.; Daniels, L.M.; Zanella, M.; Robertson, C.M.; Kershaw Cook, L.J.; Hansen, A.-L.; Knapp, M.; Hardwick, L.J.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Journal of the American Chemical Society (Oct 2021); https://doi.org/10.1021/jacs.1c07874
The case for fluoride-ion batteries; Xiao, A.W.; Galatolo, G.; Pasta, M.; Joule (Oct 2021); https://doi.org/10.1016/j.joule.2021.09.016 (See also LiSTAR)
Structural complexity in Prussian blue analogues; Cattermull, J.; Pasta, M.; Goodwin, A.L.; Materials Horizons (Oct 2021); https://doi.org/10.1039/d1mh01124c (See also LiSTAR)
Li4.3AlS3.3Cl0.7: A Sulfide-Chloride Lithium Ion Conductor with Highly Disordered Structure and Increased Conductivity; Gamon, J.; Dyer, M.S.; Duff, B.B.; Vasylenko, A.; Daniels, L.M.; Zanella, M.; Gaultois, M.W.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Chemistry of Materials (Nov 2021); https://doi.org/10.1021/acs.chemmater.1c02751
Detection of trapped molecular O2in a charged Li-rich cathode by Neutron PDF; House, R.A.; Playford, H.Y.; Smith, R.I.; Holter, J.; Griffiths, I.; Zhou, K.-J.; Bruce, P.G.; Energy and Environmental Science (Dec 2021); https://doi.org/10.1039/d1ee02237g (See also Catmat)
TiO2 as Second Phase in Na3Zr2Si2PO12 to Suppress Dendrite Growth in Sodium Metal Solid-State Batteries; Gao, Z.; Yang, J.; Li, G.; Ferber, T.; Feng, J.; Li, Y.; Fu, H.; Jaegermann, W.; Monroe, C.W.; Huang, Y.; Advanced Energy Materials (Jan 2022); https://doi.org/10.1002/aenm.202103607
A compliant and low-expansion 2-phase micro-architectured material, with potential application to solid-state Li-ion batteries; Zhao, Y.; Deshpande, V.S.; Fleck, N.A.; Journal of the Mechanics and Physics of Solids (Jan 2022); https://doi.org/10.1016/j.jmps.2021.104683 (See also FutureCat)
Insights into the Transport and Thermodynamic Properties of a Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte for Battery Applications; Fawdon, J.; Rees, G.J.; La Mantia, F.; Pasta, M.; Journal of Physical Chemistry Letters (Feb 2022); https://doi.org/10.1021/acs.jpclett.1c04246 (See also LiSTAR)
Solid-state lithium battery cathodes operating at low pressures; Gao, X.; Liu, B.; Hu, B.; Ning, Z.; Jolly, D.S.; Zhang, S.; Perera, J.; Bu, J.; Liu, J.; Doerrer, C.; Darnbrough, E.; Armstrong, D.; Grant, P.S.; Bruce, P.G.; Joule (March 2022); https://doi.org/10.1016/j.joule.2022.02.008
Exploiting Sodium Coordination in Alternating Monomer Sequences to Toughen Degradable Block Polyester Thermoplastic Elastomers; Gregory, G.L.; Williams, C.K.; Macromolecules (March 2022); https://doi.org/10.1021/acs.macromol.2c00068
Cation Disorder and Large Tetragonal Supercell Ordering in the Li-Rich Argyrodite Li7Zn0.5SiS6; Leube, B.T.; Collins, C.M.; Daniels, L.M.; Duff, B.B.; Dang, Y.; Chen, R.; Gaultois, M.W.; Manning, T.D.; Blanc, F.; Dyer, M.S.; Claridge, J.B.; Rosseinsky, M.J.; Chemistry of Materials (April 2022); https://doi.org/10.1021/acs.chemmater.2c00320
In situ and operando characterisation of Li metal – Solid electrolyte interfaces; Narayanan, S.; Gibson, J.S.; Aspinall, J.; Weatherup, R.S.; Pasta, M.; Current Opinion in Solid State and Materials Science (April 2022); https://doi.org/10.1016/j.cossms.2021.100978
Li-ion conductivity in Li2OHCl1−xBrx solid electrolytes: grains, grain boundaries and interfaces; Lee, H.J.; Darminto, B.; Narayanan, S.; Diaz-Lopez, M.; Xiao, A.W.; Chart, Y.; Lee, J.H.; Dawson, J.A.; Pasta, M.; Journal of Materials Chemistry A (April 2022); https://doi.org/10.1039/d2ta01462a
Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries; Jolly, D.S.; Melvin, D.L.R.; Stephens, I.D.R.; Brugge, R.H.; Pu, S.D.; Bu, J.; Ning, Z.; Hartley, G.O.; Adamson, P.; Grant, P.S.; Aguadero, A.; Bruce, P.G.; Inorganics (April 2022); https://doi.org/10.3390/inorganics10050060
Origin of the High Specific Capacity in Sodium Manganese Hexacyanomanganate; Hurlbutt, K.; Giustino, F.; Volonakis, G.; Pasta, M.; Chemistry of Materials (May 2022); https://doi.org/10.1021/acs.chemmater.1c04167
Direct imaging of oxygen shifts associated with the oxygen redox of Li-rich layered oxides; Song, W.; Pérez-Osorio, M.A.; Marie, J.-J.; Liberti, E.; Luo, X.; O’Leary, C.; House, R.A.; Bruce, P.G.; Nellist, P.D.; Joule (May 2022); https://doi.org/10.1016/j.joule.2022.04.008 (See also Catmat)
The Role of the Reducible Dopant in Solid Electrolyte-Lithium Metal Interfaces; McClelland, I.; El-Shinawi, H.; Booth, S.G.; Regoutz, A.; Clough, J.; Altus, S.; Cussen, E.J.; Baker, P.J.; Cussen, S.A.; Chemistry of Materials (May 2022); https://doi.org/10.1021/acs.chemmater.2c00379
Uncovering the Interplay of Competing Distortions in the Prussian Blue Analogue K2Cu[Fe(CN)6]; Cattermull, J.; Sada, K.; Hurlbutt, K.; Cassidy, S.J.; Pasta, M.; Goodwin, A.L.; Chemistry of Materials (May 2022); https://doi.org/10.1021/acs.chemmater.2c00288
Achieving Ultrahigh-Rate Planar and Dendrite-Free Zinc Electroplating for Aqueous Zinc Battery Anodes; Pu, S.D.; Gong, C.; Tang, Y.T.; Ning, Z.; Liu, J.; Zhang, S.; Yuan, Y.; Melvin, D.; Yang, S.; Pi, L.; Marie, J.-J.; Hu, B.; Jenkins, M.; Li, Z.; Liu, B.; Tsang, S.C.E.; Marrow, T.J.; Reed, R.C.; Gao, X.; Bruce, P.G.; Robertson, A.W.; Advanced Materials (May 2022); https://doi.org/10.1002/adma.202202552
Controlling Iron Versus Oxygen Redox in the Layered Cathode Na0.67Fe0.5Mn0.5O2: Mitigating Voltage and Capacity Fade by Mg Substitution; Boivin, E.; House, R.A.; Marie, J.-J.; Bruce, P.G.; Advanced Energy Materials (June 2022); https://doi.org/10.1002/aenm.202200702
High critical currents for dendrite penetration and voiding in potassium metal anode solid-state batteries; Spencer Jolly, D.; Perera, J.; Pu, S.D.; Melvin, D.L.R.; Adamson, P.; Bruce, P.G.; Journal of Solid State Electrochemistry (June 2022); https://doi.org/10.1007/s10008-022-05225-8
Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers; Su, J.; Pasta, M.; Ning, Z.; Gao, X.; Bruce, P.G.; Grovenor, C.R.M.; Energy and Environmental Science (August 2022); https://doi.org/10.1039/d2ee01390h
LiNi0.5Mn1.5O4Cathode Microstructure for All-Solid-State Batteries; Lee, H.J.; Liu, X.; Chart, Y.; Tang, P.; Bae, J.-G.; Narayanan, S.; Lee, J.H.; Potter, R.J.; Sun, Y.; Pasta, M.; Nano Letters (Sept 2022); https://doi.org/10.1021/acs.nanolett.2c02426
Quantitative ion exchange reactions to form Li2xVac2-2xLa2Ti3O9+x defect layered perovskites from H2La2Ti3O10 via solid acid/base reaction; Thomas, C.I.; Yip, T.W.S.; Cussen, S.A.; Cussen, E.J.; Journal of Solid State Chemistry (Oct 2022); https://doi.org/10.1016/j.jssc.2022.123354
NEXGENNA – Sodium-ion Batteries
Oxygen Redox Activity through a Reductive Coupling Mechanism in the P3-Type Nickel-Doped Sodium Manganese Oxide; Kim, E.J.; Ma, L.A.; Duda, L.C.; Pickup, D.M.; Chadwick, A.V.; Younesi, R.; Irvine, J.T.S.; Robert Armstrong, A.; ACS Applied Energy Materials (Dec 2019); https://doi.org/10.1021/acsaem.9b02171
Advances in Organic Anode Materials for Na-/K-Ion Rechargeable Batteries; Desai, A.V.; Morris, R.E.; Armstrong, A.R.; ChemSusChem (July 2020); https://doi.org/10.1002/cssc.202001334
Surface Engineering Strategy Using Urea To Improve the Rate Performance of Na2Ti3O7 in Na-Ion Batteries; Costa, S.I.R.; Choi, Y.-S.; Fielding, A.J.; Naylor, A.J.; Griffin, J.M.; Sofer, Z.; Scanlon, D.O.; Tapia-Ruiz, N.; Chemistry – A European Journal (August 2020); https://doi.org/10.1002/chem.202003129
Vacancy-enhanced oxygen redox reversibility in P3-type magnesium-doped sodium manganese oxide Na0.67Mg0.2Mn0.8O2; Kim, E.J.; Ma, L.A.; Pickup, D.M.; Chadwick, A.V.; Younesi, R.; Maughan, P.; Irvine, J.T.S.; Armstrong, A.R.; ACS Applied Energy Materials (Sept 2020); https://doi.org/10.1021/acsaem.0c01352
Complementary sample preparation strategies (PVD/BEXP) combining with multifunctional SPM for the characterizations of battery interfacial properties; Pan, H.; Chen, Y.; Pang, W.; Sun, H.; Li, J.; Lin, Y.; Kolosov, O.; Huang, Z.; MethodsX (Nov 2020); https://doi.org/10.1016/j.mex.2021.101250
Extending the Performance Limit of Anodes: Insights from Diffusion Kinetics of Alloying Anodes; Choi, Y.-S.; Scanlon, D.O.; Lee, J.-C.; Advanced Energy Materials (Dec 2020); https://doi.org/10.1002/aenm.202003078
Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies; Kim, E.J.; Mofredj, K.; Pickup, D.M.; Chadwick, A.V.; Irvine, J.T.S.; Armstrong, A.R.; Journal of Power Sources (Jan 2021); https://doi.org/10.1016/j.jpowsour.2020.229010
Na2Fe(C2O4)(HPO4): A promising new oxalate-phosphate based mixed polyanionic cathode for Li/Na ion batteries; Pramanik, A.; Bradford, A.J.; Lee, S.L.; Lightfoot, P.; Armstrong, A.R.; JPhys Materials (Feb 2021); https://doi.org/10.1088/2515-7639/abe5f9
Surface or bulk? Real-time manganese dissolution detection in a lithium-ion cathode; Nikman, S.; Zhao, D.; Gonzalez-Perez, V.; Hoster, H.H.; Mertens, S.F.L.; Electrochimica Acta (April 2021); https://doi.org/10.1016/j.electacta.2021.138373
Sodium-Ion Batteries: Current Understanding of the Sodium Storage Mechanism in Hard Carbons Optimising properties to speed commercialisation; Fitzpatrick, J.R.; Costa, S.I.R.; Tapia-Rui, N.; Johnson Matthey Technology Review (June 2021); https://doi.org/10.1595/205651322X16250408525547
2021 roadmap for sodium-ion batteries; Tapia-Ruiz, N.; Armstrong, A.R.; Alptekin, H.; Amores, M.A.; Au, H.; Barker, J.; Boston, R.; Brant, W.R.; Brittain, J.M.; Chen, Y.; Chhowalla, M.; Choi, Y.-S.; Costa, S.I.R.; Ribadeneyra, M.C.; Cussen, S.A.; Cussen, E.J.; David, W.I.F.; Desai, A.V.; Dickson, S.A.M.; Eweka, E.I.; Forero-Saboya, J.D.; Grey, C.P.; Griffin, J.M.; Gross, P.; Hua, X.; Irvine, J.T.S.; Johansson, P.; Jones, M.O.; Karlsmo, M.; Kendrick, E.; Kim, E.; Kolosov, O.V.; Li, Z.; Mertens, S.F.L.; Mogensen, R.; Monconduit, L.; Morris, R.E.; Naylor, A.J.; Nikman, S.; O’Keefe, C.A.; Ould, D.M.C.; Palgrave, R.G.; Poizot, P.; Ponrouch, A.; Renault, S.; Reynolds, E.M.; Rudola, A.; Sayers, R.; Scanlon, D.O.; Sen, S.; Seymour, V.R.; Silván, B.; Sougrati, M.T.; Stievano, L.; Stone, G.S.; Thomas, C.I.; Titirici, M.-M.; Tong, J.; Wood, T.J.; Wright, D.S.; Younesi, R.; JPhys Energy (July 2021); https://doi.org/10.1088/2515-7655/ac01ef (See also SOLBAT)
Correlating Local Structure and Sodium Storage in Hard Carbon Anodes: Insights from Pair Distribution Function Analysis and Solid-State NMR; Stratford, J.M.; Kleppe, A.K.; Keeble, D.S.; Chater, P.A.; Meysami, S.S.; Wright, C.J.; Barker, J.; Titirici, M.-M.; Allan, P.K.; Grey, C.P.; Journal of the American Chemical Society (August 2021); https://doi.org/10.1021/jacs.1c06058
Controlling Interfacial Reduction Kinetics and Suppressing Electrochemical Oscillations in Li4Ti5O12 Thin-Film Anodes; Chen, Y.; Pan, H.; Lin, C.; Li, J.; Cai, R.; Haigh, S.J.; Zhao, G.; Zhang, J.; Lin, Y.; Kolosov, O.V.; Huang, Z.; Advanced Functional Materials (August 2021); https://doi.org/10.1002/adfm.202105354
P2–Na2/3Mg1/4Mn7/12Co1/6O2 cathode material based on oxygen redox activity with improved first-cycle voltage hysteresis; Tapia-Ruiz, N.; Soares, C.; Somerville, J.W.; House, R.A.; Billaud, J.; Roberts, M.R.; Bruce, P.G.; Journal of Power Sources (Sept 2021); https://doi.org/10.1016/j.jpowsour.2021.230104
New Route to Battery Grade NaPF6 for Na-Ion Batteries: Expanding the Accessible Concentration; Ould, D.M.C.; Menkin, S.; O’Keefe, C.A.; Coowar, F.; Barker, J.; Grey, C.P.; Wright, D.S.; Angewandte Chemie – International Edition (Sept 2021); https://doi.org/10.1002/anie.202111215
Ion dynamics in fluoride-containing polyatomic anion cathodes by muon spectroscopy; Johnston, B.I.J.; Baker, P.J.; Cussen, S.A.; JPhys Materials (Sept 2021); https://doi.org/10.1088/2515-7639/ac22ba (See also FutureCat)
Solvothermal synthesis of a novel calcium metal-organic framework: High temperature and electrochemical behaviour; Main, R.M.; Cordes, D.B.; Desai, A.V.; Slawin, A.M.Z.; Wheatley, P.; Armstrong, A.R.; Morris, R.E.; Molecules (Nov 2021); https://doi.org/10.3390/molecules26227048
Exploring solid-electrolyte-interphase in rechargeable batteries: New methodology for nanoscale studies via ‘3D nanorheology microscopy’; Chen, Y.; Kolosov, O.V.; Imaging & Microscopy (Nov 2021); https://analyticalscience.wiley.com/do/10.1002/was.0004000211/full/
Mechanochemical synthesis of sodium carboxylates as anode materials in sodium ion batteries; Rainer, D.N.; Desai, A.V.; Armstrong, A.R.; Morris, R.E.; Journal of Materials Chemistry A (Nov 2021); https://doi.org/10.1039/d1ta07897f
Rapid Microwave-Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodium-Ion Batteries; Desai, A.V.; Rainer, D.N.; Pramanik, A.; Cabañero, J.M.; Morris, R.E.; Armstrong, A.R.; Small Methods (Dec 2021); https://doi.org/10.1002/smtd.202101016
Na2.4Al0.4Mn2.6O7 anionic redox cathode material for sodium-ion batteries – a combined experimental and theoretical approach to elucidate its charge storage mechanism; Soares, C.; Silván, B.; Choi, Y.-S.; Celorrio, V.; Seymour, V.R.; Cibin, G.; Griffin, J.M.; Scanlon, D.O.; Tapia-Ruiz, N.; Journal of Materials Chemistry A (Dec 2021); https://doi.org/10.1039/d1ta05137g
Importance of Superstructure in Stabilizing Oxygen Redox in P3-Na0.67Li0.2Mn0.8O2; Kim, E.J.; Maughan, P.A.; Bassey, E.N.; Clément, R.J.; Ma, L.A.; Duda, L.C.; Sehrawat, D.; Younesi, R.; Sharma, N.; Grey, C.P.; Armstrong, A.R.; Advanced Energy Materials (Jan 2022); https://doi.org/10.1002/aenm.202102325
A structural investigation of organic battery anode materials by NMR crystallography; Whewell, T.; Seymour, V.R.; Griffiths, K.; Halcovitch, N.R.; Desai, A.V.; Morris, R.E.; Armstrong, A.R.; Griffin, J.M.; Magnetic Resonance in Chemistry (Jan 2022); https://doi.org/10.1002/mrc.5249
Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na4/7[□1/7Ti1/7Mn5/7]O2 in sodium-ion batteries; Linnell, S.F.; Kim, E.J.; Choi, Y.-S.; Hirsbrunner, M.; Imada, S.; Pramanik, A.; Cuesta, A.F.; Miller, D.N.; Fusco, E.; Bode, B.E.; Irvine, J.T.S.; Duda, L.C.; Scanlon, D.O.; Armstrong, A.R.; Journal of Materials Chemistry A (March 2022); https://doi.org/10.1039/d2ta01485h
Exploring the gel part of solid-state interphase in rechargeable batteries via 3D Nanorheology microscopy; Chen, Y.; Kolosov, O.V.; Microanalysis and Analysis (March 2022); https://www.microscopyebooks.com/Europe/Supplements/2022/March
Enhanced Cycling Stability in the Anion Redox Material P3-Type Zn-Substituted Sodium Manganese Oxide; Linnell, S.F.; Hirsbrunner, M.; Imada, S.; Cibin, G.; Naden, A.B.; Chadwick, A.V.; Irvine, J.T.S.; Duda, L.C.; Armstrong, A.R.; ChemElectroChem (April 2022); https://doi.org/10.1002/celc.202200240
Sodium Borates: Expanding the Electrolyte Selection for Sodium-Ion Batteries; Ould, D.M.C.; Menkin, S.; Smith, H.E.; Riesgo-Gonzalez, V.; Jónsson, E.; O’Keefe, C.A.; Coowar, F.; Barker, J.; Bond, A.D.; Grey, C.P.; Wright, D.S.; Angewandte Chemie – International Edition (April 2022); https://doi.org/10.1002/anie.202202133
Exploiting anion and cation redox chemistry in lithium-rich perovskite oxalate: a novel next-generation Li/Na-ion battery electrode; Pramanik, A.; Manche, A.G.; Clulow, R.; Lightfoot, P.; Armstrong, A.R.; Dalton Transactions (July 2022); https://doi.org/10.1039/d2dt01447e
Effect of Cu substitution on anion redox behaviour in P3-type sodium manganese oxides; Linnell, S.F.; Manche, A.G.; Liao, Y.; Hirsbrunner, M.; Imada, S.; Naden, A.B.; Irvine, J.T.S.; Duda, L.C.; Armstrong, A.R.; JPhys Energy (Sept 2022); https://doi.org/10.1088/2515-7655/ac95cc
Effect of Ti-Substitution on the Properties of P3 Structure Na2/3Mn0.8Li0.2O2 Showing a Ribbon Superlattice; Linnell, S.F.; Jeong Kim, E.; Anh Ma, L.; Naden, A.B.; Irvine, J.T.S.; Younesi, R.; Duda, L.C.; Armstrong, A.R.; ChemElectroChem (Sept 2022); https://doi.org/10.1002/celc.202200929
LiSTAR – The Lithium-Sulfur Technology Accelerator
A highly sensitive electrochemical sensor of polysulfides in polymer lithium-sulfur batteries ; Meddings, N.; Judez, X.; Li, C.; Garcia-Araez, N.; Journal of the Electrochemical Society (June 2020); https://doi.org/10.1149/1945-7111/ab9d95
Understanding and controlling the covalent functionalisation of graphene; Clancy, A.J.; Au, H.; Rubio, N.; Coulter, G.O.; Shaffer, M.S.P.; Dalton Transactions (June 2020); https://doi.org/10.1039/d0dt01589j
Toward Practical Demonstration of High-Energy-Density Batteries; Shearing, P.R.; Johnson, L.R.; Joule (July 2020); https://doi.org/10.1016/j.joule.2020.06.019
Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements; Robinson, J.B.; Owen, R.E.; Kok, M.D.R.; Maier, M.; Majasan, J.; Braglia, M.; Stocker, R.; Amietszajew, T.; Roberts, A.J.; Bhagat, R.; Billsson, D.; Olson, J.Z.; Park, J.; Hinds, G.; Ahlberg Tidblad, A.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (August 2020); https://doi.org/10.1149/1945-7111/abb174
Editors’ choice—4D neutron and X-ray tomography studies of high energy density primary batteries: part I. dynamic studies of LiSOCl2 during discharge; Ziesche, R.F.; Robinson, J.B.; Kok, M.D.R.; Markötter, H.; Kockelmann, W.; Kardjilov, N.; Manke, I.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Oct 2020); https://doi.org/10.1149/1945-7111/abbbbc
The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery; Di Lecce, D.; Marangon, V.; Du, W.; Brett, D.J.L.; Shearing, P.R.; Hassoun, J.; Journal of Power Sources (Oct 2020); https://doi.org/10.1016/j.jpowsour.2020.228424
Editors’ choice—4D neutron and X-ray tomography studies of high energy density primary batteries: Part II. multi-modal microscopy of LiSOCl2 cells; Ziesche, R.F.; Robinson, J.B.; Markötter, H.; Bradbury, R.; Tengattini, A.; Lenoir, N.; Helfen, L.; Kockelmann, W.; Kardjilov, N.; Manke, I.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Oct 2020); https://doi.org/10.1149/1945-7111/abbfd9
Using in-situ laboratory and synchrotron-based x-ray diffraction for lithium-ion batteries characterization: A review on recent developments; Llewellyn, A.V.; Matruglio, A.; Brett, D.J.L.; Jervis, R.; Shearing, P.R.; Condensed Matter (Nov 2020); https://doi.org/10.3390/condmat5040075 (See also Catmat and Characterisation)
Molecular modeling of electrolyte and polysulfide ions for lithium-sulfur batteries; Babar, S.; Lekakou, C.; Ionics (Dec 2020); https://doi.org/10.1007/s11581-020-03860-7
2021 roadmap on lithium sulfur batteries; Robinson, J.B.; Xi, K.; Kumar, R.V.; Ferrari, A.C.; Au, H.; Titirici, M.M.; Puerto, A.P.; Kucernak, A.; Fitch, S.D.S.; Araez, N.G.; Brown, Z.L.; Pasta, M.; Furness, L.; Kibler, A.J.; Walsh, D.A.; Johnson, L.R.; Holc, C.; Newton, G.N.; Champness, N.R.; Markoulidis, F.; Crean, C.; Slade, R.C.T.; Andritsos, E.I.; Cai, Q.; Babar, S.; Zhang, T.; Lekakou, C.; Kulkarni, N.; Rettie, A.J.E.; Jervis, R.; Cornish, M.; Marinescu, M.; Offer, G.; Li, Z.; Bird, L.; Grey, C.P.; Chhowalla, M.; Lecce, D.D.; Owen, R.E.; Miller, T.S.; Brett, D.J.L.; Liatard, S.; Ainsworth, D.; Shearing, P.R.; JPhys Energy (March 2021); https://doi.org/10.1088/2515-7655/abdb9a (See also SOLBAT)
Molecular redox species for next-generation batteries; Cameron, J.M.; Holc, C.; Kibler, A.J.; Peake, C.L.; Walsh, D.A.; Newton, G.N.; Johnson, L.R.; Chemical Society Reviews (April 2021); https://doi.org/10.1039/d0cs01507e
Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook; Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.L.; Rettie, A.J.E.; ChemElectroChem (April 2021); https://doi.org/10.1002/celc.202100108
Developments in Dilatometry for Characterisation of Electrochemical Devices; Michael, H.; Jervis, R.; Brett, D.J.L; Shearing, P.R.; Batteries and Supercaps (April 2021); https://doi.org/10.1002/batt.202100027 (See also Degradation)
Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes; Holc, C.; Dimogiannis, K.; Hopkinson, E.; Johnson, L.R.; ACS Applied Materials and Interfaces (June 2021); https://doi.org/10.1021/acsami.1c06130
Dendrite suppression by anode polishing in zinc-ion batteries; Zhang, Z.; Said, S.; Smith, K.; Zhang, Y.S.; He, G.; Jervis, R.; Shearing, P.R.; Miller, T.S.; Brett, D.J.L.; Journal of Materials Chemistry A (June 2021); https://doi.org/10.1039/d1ta02682h (See also Degradation)
Recent advances in acoustic diagnostics for electrochemical power systems; Majasan, J.O.; Robinson, J.B.; Owen, R.E.; Maier, M.; Radhakrishnan, A.N.P.; Pham, M.; Tranter, T.G.; Zhang, Y.; Shearing, P.R.; Brett, D.J.L.; JPhys Energy (June 2021); https://doi.org/10.1088/2515-7655/abfb4a (See also Nextrode)
Characterising lithium-ion electrolytes via operando Raman microspectroscopy; Fawdon, J.; Ihli, J.; Mantia, F.L.; Pasta, M.; Nature Communications (June 2021); https://doi.org/10.1038/s41467-021-24297-0 (See also SOLBAT)
A two-dimensional type I superionic conductor; Rettie, A.J.E.; Ding, J.; Zhou, X.; Johnson, M.J.; Malliakas, C.D.; Osti, N.C.; Chung, D.Y.; Osborn, R.; Delaire, O.; Rosenkranz, S.; Kanatzidis, M.G.; Nature Materials (July 2021); https://doi.org/10.1038/s41563-021-01053-9
Single-Atom Catalysts as Promising Cathode Materials for Lithium-Sulfur Batteries; Andritsos, E.I.; Lekakou, C.; Cai, Q.; Journal of Physical Chemistry C (August 2021); https://doi.org/10.1021/acs.jpcc.1c04491
Electrochemistry of redox-active molecules confined within narrow carbon nanotubes; Jordan, J.W.; Townsend, W.J.V.; Johnson, L.R.; Walsh, D.A.; Newton, G.N.; Khlobystov, A.N.; Chemical Society Reviews (August 2021); https://doi.org/10.1039/d1cs00478f
PIM-1 as a Multifunctional Framework to Enable High-Performance Solid-State Lithium–Sulfur Batteries; Ji, Y.; Yang, K.; Liu, M.; Chen, S.; Liu, X.; Yang, B.; Wang, Z.; Huang, W.; Song, Z.; Xue, S.; Fu, Y.; Yang, L.; Miller, T.S.; Pan, F.; Advanced Functional Materials (August 2021); https://doi.org/10.1002/adfm.202104830
Characterizing Batteries by In Situ Electrochemical Atomic Force Microscopy: A Critical Review; Zhang, Z.; Said, S.; Smith, K.; Jervis, R.; Howard, C.A.; Shearing, P.R.; Brett, D.J.L.; Miller, T.S.; Advanced Energy Materials (Sept 2021); https://doi.org/10.1002/aenm.202101518 (See also Degradation)
The case for fluoride-ion batteries; Xiao, A.W.; Galatolo, G.; Pasta, M.; Joule (Oct 2021); https://doi.org/10.1016/j.joule.2021.09.016 (See also SOLBAT)
Structural complexity in Prussian blue analogues; Cattermull, J.; Pasta, M.; Goodwin, A.L.; Materials Horizons (Oct 2021); https://doi.org/10.1039/d1mh01124c (See also SOLBAT)
Stabilization of Polyoxometalate Charge Carriers via Redox-Driven Nanoconfinement in Single-Walled Carbon Nanotubes; Jordan, J.W.; Cameron, J.M.; Lowe, G.A.; Rance, G.A.; Fung, K.L.Y.; Johnson, L.R.; Walsh, D.A.; Khlobystov, A.N.; Newton, G.N.; Angewandte Chemie – International Edition (Dec 2021); https://doi.org/10.1002/anie.202115619
Characteristics of a gold-doped electrode for application in high-performance lithium-sulfur battery; Marangon, V.; Di Lecce, D.; Brett, D.J.L.; Shearing, P.R.; Hassoun, J.; Journal of Energy Chemistry (Jan 2022); https://doi.org/10.1016/j.jechem.2021.04.025
A systematic investigation of internal physical and chemical changes of lithium-ion batteries during overcharge; Mao, N.; Zhang, T.; Wang, Z.; Cai, Q.; Journal of Power Sources (Jan 2022); https://doi.org/10.1016/j.jpowsour.2021.230767
Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery; Dong, S.; Yang, S.; Chen, Y.; Kuss, C.; Cui, G.; Johnson, L.R.; Gao, X.; Bruce, P.G.; Joule (Jan 2022); https://doi.org/10.1016/j.joule.2021.12.012
Operando characterization of active surface area and passivation effects on sulfur-carbon composites for lithium-sulfur batteries; Li, H.; Lampkin, J.; Chien, Y.-C.; Furness, L.; Brandell, D.; Lacey, M.J.; Garcia-Araez, N.; Electrochimica Acta (Jan 2022); https://doi.org/10.1016/j.electacta.2021.139572
Gently does it!: in situ preparation of alkali metal-solid electrolyte interfaces for photoelectron spectroscopy; Gibson, J.S.; Narayanan, S.; Swallow, J.E.N.; Kumar-Thakur, P.; Pasta, M.; Lee, T.-L.; Weatherup, R.S.; Faraday Discussions (Jan 2022); https://doi.org/10.1039/d1fd00118c
Sulfur infiltration and allotrope formation in porous cathode hosts for lithium-sulfur batteries; Grabe, S.; Baboo, J.P.; Tennison, S.; Zhang, T.; Lekakou, C.; Andritsos, E.I.; Cai, Q.; Downes, S.; Hinder, S.; Watts, J.F.; AIChE Journal (Feb 2022); https://doi.org/10.1002/aic.17638
Insights into the Transport and Thermodynamic Properties of a Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte for Battery Applications; Fawdon, J.; Rees, G.J.; La Mantia, F.; Pasta, M.; Journal of Physical Chemistry Letters (Feb 2022); https://doi.org/10.1021/acs.jpclett.1c04246 (See also SOLBAT)
In-situ X-ray tomographic imaging study of gas and structural evolution in a commercial Li-ion pouch cell; Du, W.; Owen, R.E.; Jnawali, A.; Neville, T.P.; Iacoviello, F.; Zhang, Z.; Liatard, S.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Feb 2022); https://doi.org/10.1016/j.jpowsour.2021.230818 (See also Degradation and SafeBatt)
Beyond Li-ion batteries: performance, materials diversification, and sustainability; Au, H.; Crespo-Ribadeneyra, M.; Titirici, M.-M.; One Earth (March 2022); https://doi.org/10.1016/j.oneear.2022.02.014
Kinetics of sulphur dissolution in lithium-sulphur batteries; Dent, M.; Jakubczyk, E.; Zhang, T.; Lekakou, C.; JPhys Energy (March 2022); https://doi.org/10.1088/2515-7655/ac521d
A Comparative Techno-Economic and Lifecycle Analysis of Biomass-Derived Anode Materials for Lithium- and Sodium-Ion Batteries; Trotta, F.; Wang, G.J.; Guo, Z.; Xu, Z.; Crespo Ribadeneyra, M.; Au, H.; Edge, J.S.; Titirici, M.M.; Lander, L.; Advanced Sustainable Systems (April 2022); https://doi.org/10.1002/adsu.202200047
Operando Ultrasonic Monitoring of Lithium-Ion Battery Temperature and Behaviour at Different Cycling Rates and under Drive Cycle Conditions; Owen, R.E.; Robinson, J.B.; Weaving, J.S.; Pham, M.T.M.; Tranter, T.G.; Neville, T.P.; Billson, D.; Braglia, M.; Stocker, R.; Tidblad, A.A.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (April 2022); https://doi.org/10.1149/1945-7111/ac6833 (See also MSM, Degradation, SafeBatt and ReLIB)
Investigation of the Effect of Temperature on Lithium-Sulfur Cell Cycle Life Performance Using System Identification and X-Ray Tomography; Shateri, N.; Auger, D.J.; Fotouhi, A.; Brighton, J.; Du, W.; Owen, R.E.; Brett, D.J.L.; Shearing, P.R.; Batteries and Supercaps (April 2022); https://doi.org/10.1002/batt.202200035
A comprehensive numerical study on electrochemical-thermal models of a cylindrical lithium-ion battery during discharge process; He, T.; Zhang, T.; Wang, Z.; Cai, Q.; Applied Energy (May 2022); https://doi.org/10.1016/j.apenergy.2022.118797
Atomic-Scale Design of Anode Materials for Alkali Metal (Li/Na/K)-Ion Batteries: Progress and Perspectives; Olsson, E.; Yu, J.; Zhang, H.; Cheng, H.-M.; Cai, Q.; Advanced Energy Materials (May 2022); https://doi.org/10.1002/aenm.202200662
Toward Rigorous Validation of Li-S Battery Models; Cornish, M.; Marinescu, M.; Journal of the Electrochemical Society (June 2022); https://doi.org/10.1149/1945-7111/ac7750
Optimizing the Crystallinity of Li1.5al0.5ge1.5(Po4)3 Oxide Electrolytes for the Enhanced Performance in All-Solid-State Lithium-Sulfur Batteries; Ma, Q.; Wang, J.; Sun, S.; Ma, M.; Yao, X.; Cai, Q.; Li, J.; Chen, X.; Wang, Z.; Zhuang, R.; Mu, P.; Liu, J.; Yan, W.; {preprint} (July 2022); https://doi.org/10.2139/ssrn.4176039 (See also SOLBAT)
Enflurane Additive for Sodium Negative Electrodes; Akkisetty, B.; Dimogiannis, K.; Searle, J.; Rogers, D.; Newton, G.N.; Johnson, L.R.; ACS Applied Materials and Interfaces (August 2022); https://doi.org/10.1021/acsami.2c06502
Investigating the Role of Surface Roughness and Defects on EC Breakdown, as a Precursor to SEI Formation in Hard Carbon Sodium-Ion Battery Anodes; Olsson, E.; Cottom, J.; Alptekin, H.; Au, H.; Crespo-Ribadeneyra, M.; Titirici, M.-M.; Cai, Q.; Small (August 2022); https://doi.org/10.1002/smll.202200177
The sustainable materials roadmap; Titirici, M.; Baird, S.G.; Sparks, T.D.; Yang, S.M.; Brandt-Talbot, A.; Hosseinaei, O.; Harper, D.P.; Parker, R.M.; Vignolini, S.; Berglund, L.A.; Li, Y.; Gao, H.-L.; Mao, L.-B.; Yu, S.-H.; Díez, N.; Ferrero, G.A.; Sevilla, M.; Szilágyi, P.i.; Stubbs, C.J.; Worch, J.C.; Huang, Y.; Luscombe, C.K.; Lee, K.-Y.; Luo, H.; Platts, M.J.; Tiwari, D.; Kovalevskiy, D.; Fermin, D.J.; Au, H.; Alptekin, H.; Crespo-Ribadeneyra, M.; Ting, V.P.; Fellinger, T.-P.; Barrio, J.; Westhead, O.; Roy, C.; Stephens, I.E.L.; Nicolae, S.A.; Sarma, S.C.; Oates, R.P.; Wang, C.-G.; Li, Z.; Loh, X.J.; Myers, R.J.; Heeren, N.; Grégoire, A.; Périssé, C.; Zhao, X.; Vodovotz, Y.; Earley, B.; Finnveden, G.; Björklund, A.; Harper, G.D.J.; Walton, A.; Anderson, P.A.; JPhys Materials (August 2022); https://doi.org/10.1088/2515-7639/ac4ee5 (See also ReLIB)
Conducting Polymers Meet Lithium-Sulfur Batteries: Progress, Challenges and Perspectives; Chen, X.; Zhao, C.; Yang, K.; Sun, S.; Bi, J.; Zhu, N.; Cai, Q.; Wang, J.; Yan, W.; Energy & Environmental Materials (August 2022); https://doi.org/10.1002/eem2.12483
Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth; Wang, J.; Ma, Q.; Sun, S.; Yang, K.; Cai, Q.; Olsson, E.; Chen, X.; Wang, Z.; Abdelkader, A.M.; Li, Y.; Yan, W.; Ding, S.; Xi, K.; eScience (Sept 2022); https://doi.org/10.1016/j.esci.2022.09.001
Correlative electrochemical acoustic time-of-flight spectroscopy and X-ray imaging to monitor the performance of single-crystal and polycrystalline NMC811/Gr lithium-ion batteries; Michael, H.; Owen, R.E.; Robinson, J.B.; Heenan, T.M.M.; Tan, C.; Wade, A.J.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Sept 2022); https://doi.org/10.1016/j.jpowsour.2022.231775 (See also Degradation)
Lithium-sulfur battery diagnostics through distribution of relaxation times analysis; Soni, R.; Robinson, J.B.; Shearing, P.R.; Brett, D.J.L.; Rettie, A.J.E.; Miller, T.S.; Energy Storage Materials (Oct 2022); https://doi.org/10.1016/j.ensm.2022.06.016
EBSD coupled indentation: Nanoscale mechanics of lithium metal; Aspinall, J.; Armstrong, D.E.J.; Pasta, M.; Materials Today Energy (Oct 2022); https://doi.org/10.1016/j.mtener.2022.101183
Battery state-of-charge estimation using machine learning analysis of ultrasonic signatures; Galiounas, E.; Tranter, T.G.; Owen, R.E.; Robinson, J.B.; Shearing, P.R.; Brett, D.J.L.; Energy and AI (Nov 2022); https://doi.org/10.1016/j.egyai.2022.100188
Dilithium phthalocyanine as electrolyte additive for the regulation of ion solvation and transport towards dendrite-free Li metal anodes; Li, X.; Fu, Z.; Wang, J.; Zhao, X.; Zhang, Y.; Liu, W.; Cai, Q.; Hu, C.; Chemical Engineering Journal (Dec 2022); https://doi.org/10.1016/j.cej.2022.138112
Visualising coke-induced degradation of catalysts used for CO2-reforming of methane with X-ray nano-computed tomography; Owen, R.E.; Zhang, Y.S.; Neville, T.P.; Manos, G.; Shearing, P.R., Brett, D.J.L.; Bailey, J.J.; Carbon Capture Science & Technology (Dec 2022); https://doi.org/10.1016/j.ccst.2022.100068
Revealing the thermal stability and component heat contribution ratio of overcharged lithium-ion batteries during thermal runaway; Mao, N.; Zhang, T.; Wang, Z.; Gadkari, S.; Wang, J.; He, T.; Gao, T.; Cai, Q.; Energy (Jan 2023); https://doi.org/10.1016/j.energy.2022.125786
Battery Characterisation
Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications; Bentley, C.L.; Kang, M.; Unwin, P.R.; Analytical Chemistry (June 2020); https://doi.org/10.1021/acs.analchem.0c01540
The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance; Brugge, R.H.; Pesci, F.M.; Cavallaro, A.; Sole, C.; Isaacs, M.A.; Kerherve, G.; Weatherup, R.S.; Aguadero, A.; Journal of Materials Chemistry A (July 2020); https://doi.org/10.1039/d0ta04974c (See also Degradation)
Editors’ choice—4D neutron and X-ray tomography studies of high energy density primary batteries: part I. dynamic studies of LiSOCl2 during discharge; Ziesche, R.F.; Robinson, J.B.; Kok, M.D.R.; Markötter, H.; Kockelmann, W.; Kardjilov, N.; Manke, I.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Oct 2020); https://doi.org/10.1149/1945-7111/abbbbc (See also LiSTAR)
Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes; Nicholls, D.; Lee, J.; Amari, H.; Stevens, A.J.; Mehdi, B.L.; Browning, N.D.; Nanoscale (Oct 2020); https://doi.org/10.1039/d0nr04589f (See also Degradation and ReLIB)
Editors’ choice—4D neutron and X-ray tomography studies of high energy density primary batteries: Part II. multi-modal microscopy of LiSOCl2 cells; Ziesche, R.F.; Robinson, J.B.; Markötter, H.; Bradbury, R.; Tengattini, A.; Lenoir, N.; Helfen, L.; Kockelmann, W.; Kardjilov, N.; Manke, I.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Oct 2020); https://doi.org/10.1149/1945-7111/abbfd9 (See also LiSTAR)
Using in-situ laboratory and synchrotron-based x-ray diffraction for lithium-ion batteries characterization: A review on recent developments; Llewellyn, A.V.; Matruglio, A.; Brett, D.J.L.; Jervis, R.; Shearing, P.R.; Condensed Matter (Nov 2020); https://doi.org/10.3390/condmat5040075 (See also Catmat and LiSTAR)
Operando Bragg Coherent Diffraction Imaging of LiNi0.8Mn0.1Co0.1O2Primary Particles within Commercially Printed NMC811 Electrode Sheets; Estandarte, A.K.C.; Diao, J.; Llewellyn, A.V.; Jnawali, A.; Heenan, T.M.M.; Daemi, S.R.; Bailey, J.J.; Cipiccia, S.; Batey, D.; Shi, X.; Rau, C.; Brett, D.J.L.; Jervis, R.; Robinson, I.K.; Shearing, P.R.; ACS Nano (Dec 2020); https://doi.org/10.1021/acsnano.0c08575
4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes; Ziesche, R.F.; Tremsin, A.S.; Huang, C.; Tan, C.; Grant, P.S.; Storm, M.; Brett, D.J.L.; Shearing, P.R.; Kockelmann, W.; Journal of Imaging (Dec 2020); https://doi.org/10.3390/jimaging6120136 (See also Nextrode)
Enclosed Cells for Extending Soft X-ray Spectroscopies to Atmospheric Pressures and above; Jones, E.S.; Swallow, J.E.N.; Weatherup, R.S.; ACS Symposium Series (Jan 2021); https://doi.org/10.1021/bk-2021-1396.ch008
Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy; Lee, J.; Nicholls, D.; Browning, N.D.; Mehdi, B.L.; Physical Chemistry Chemical Physics (March 2021); https://doi.org/10.1039/d0cp06369j (See also Degradation and ReLIB)
Neutron imaging of lithium batteries; Ziesche, R.F.; Kardjilov, N.; Kockelmann, W.; Brett, D.J.L.; Shearing, P.R.; Joule (Jan 2022); https://doi.org/10.1016/j.joule.2021.12.007