A full list of publications to from the Lithium-Sulfur Batteries (LiSTAR) project to October 2023 can be found here.   

  1. Erratum: A highly sensitive electrochemical sensor of polysulfides in polymer lithium-sulfur batteries (Journal of the Electrochemical Society (2020) 167 (080520) DOI: 10.1149/1945-7111/ab8ce9); Meddings, N.; Judez, X.; Li, C.; Garcia-Araez, N.; Journal of the Electrochemical Society (June 2020) https://doi.org/10.1149/1945-7111/ab9d95  
  2. Understanding and controlling the covalent functionalisation of graphene; Clancy, A.J.; Au, H.; Rubio, N.; Coulter, G.O.; Shaffer, M.S.P.; Dalton Transactions (June 2020) https://doi.org/10.1039/d0dt01589j  
  3. Toward Practical Demonstration of High-Energy-Density Batteries; Shearing, P.R.; Johnson, L.R.; Joule (July 2020) https://doi.org/10.1016/j.joule.2020.06.019  
  4. Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements; Robinson, J.B.; Owen, R.E.; Kok, M.D.R.; Maier, M.; Majasan, J.; Braglia, M.; Stocker, R.; Amietszajew, T.; Roberts, A.J.; Bhagat, R.; Billsson, D.; Olson, J.Z.; Park, J.; Hinds, G.; Ahlberg Tidblad, A.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Aug 2020) https://doi.org/10.1149/1945-7111/abb174  
  5. Editors’ choice—4D neutron and X-ray tomography studies of high energy density primary batteries: part I. dynamic studies of LiSOCl2 during discharge; Ziesche, R.F.; Robinson, J.B.; Kok, M.D.R.; Markötter, H.; Kockelmann, W.; Kardjilov, N.; Manke, I.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Oct 2020) https://doi.org/10.1149/1945-7111/abbbbc (See also Characterisation) 
  6. The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery; Di Lecce, D.; Marangon, V.; Du, W.; Brett, D.J.L.; Shearing, P.R.; Hassoun, J.; Journal of Power Sources (Oct 2020) https://doi.org/10.1016/j.jpowsour.2020.228424  
  7. Editors’ choice—4D neutron and X-ray tomography studies of high energy density primary batteries: Part II. multi-modal microscopy of LiSOCl2 cells; Ziesche, R.F.; Robinson, J.B.; Markötter, H.; Bradbury, R.; Tengattini, A.; Lenoir, N.; Helfen, L.; Kockelmann, W.; Kardjilov, N.; Manke, I.; Brett, D.J.L.; Shearing, P.R.; Journal of the Electrochemical Society (Oct 2020) https://doi.org/10.1149/1945-7111/abbfd9 (See also Characterisation) 
  8. Using in-situ laboratory and synchrotron-based x-ray diffraction for lithium-ion batteries characterization: A review on recent developments; Llewellyn, A.V.; Matruglio, A.; Brett, D.J.L.; Jervis, R.; Shearing, P.R.; Condensed Matter (Nov 2020) https://doi.org/10.3390/condmat5040075  (See also CATMAT, Characterisation) 
  9. Molecular modelling of electrolyte and polysulfide ions for lithium-sulfur batteries; Babar, S.; Lekakou, C.; Ionics (Dec 2020) https://doi.org/10.1007/s11581-020-03860-7  
  10. 2021 roadmap on lithium sulfur batteries; Robinson, J.B.; Xi, K.; Kumar, R.V.; Ferrari, A.C.; Au, H.; Titirici, M.M.; Puerto, A.P.; Kucernak, A.; Fitch, S.D.S.; Araez, N.G.; Brown, Z.L.; Pasta, M.; Furness, L.; Kibler, A.J.; Walsh, D.A.; Johnson, L.R.; Holc, C.; Newton, G.N.; Champness, N.R.; Markoulidis, F.; Crean, C.; Slade, R.C.T.; Andritsos, E.I.; Cai, Q.; Babar, S.; Zhang, T.; Lekakou, C.; Kulkarni, N.; Rettie, A.J.E.; Jervis, R.; Cornish, M.; Marinescu, M.; Offer, G.; Li, Z.; Bird, L.; Grey, C.P.; Chhowalla, M.; Lecce, D.D.; Owen, R.E.; Miller, T.S.; Brett, D.J.L.; Liatard, S.; Ainsworth, D.; Shearing, P.R.; JPhys Energy (March 2021) https://doi.org/10.1088/2515-7655/abdb9a  (See also SOLBAT) 
  11. Molecular redox species for next-generation batteries; Cameron, J.M.; Holc, C.; Kibler, A.J.; Peake, C.L.; Walsh, D.A.; Newton, G.N.; Johnson, L.R.; Chemical Society Reviews (April 2021) https://doi.org/10.1039/d0cs01507e  
  12. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook; Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.L.; Rettie, A.J.E.; ChemElectroChem (April 2021) https://doi.org/10.1002/celc.202100108  
  13. Developments in Dilatometry for Characterisation of Electrochemical Devices; Michael, H.; Jervis, R.; Brett, D.J.L; Shearing, P.R.; Batteries and Supercaps (April 2021) https://doi.org/10.1002/batt.202100027 (See also Degradation) 
  14. Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes; Holc, C.; Dimogiannis, K.; Hopkinson, E.; Johnson, L.R.; ACS Applied Materials and Interfaces (June 2021) https://doi.org/10.1021/acsami.1c06130  
  15. Recent advances in acoustic diagnostics for electrochemical power systems; Majasan, J.O.; Robinson, J.B.; Owen, R.E.; Maier, M.; Radhakrishnan, A.N.P.; Pham, M.; Tranter, T.G.; Zhang, Y.; Shearing, P.R.; Brett, D.J.L.; JPhys Energy (June 2021) https://doi.org/10.1088/2515-7655/abfb4a  (See also Nextrode) 
  16. Characterising lithium-ion electrolytes via operando Raman microspectroscopy; Fawdon, J.; Ihli, J.; Mantia, F.L.; Pasta, M.; Nature Communications (June 2021) https://doi.org/10.1038/s41467-021-24297-0 (See also SOLBAT) 
  17. Dendrite suppression by anode polishing in zinc-ion batteries; Zhang, Z.; Said, S.; Smith, K.; Zhang, Y.S.; He, G.; Jervis, R.; Shearing, P.R.; Miller, T.S.; Brett, D.J.L.; Journal of Materials Chemistry A (June 2021) https://doi.org/10.1039/d1ta02682h (See also Degradation) 
  18. A two-dimensional type I superionic conductor; Rettie, A.J.E.; Ding, J.; Zhou, X.; Johnson, M.J.; Malliakas, C.D.; Osti, N.C.; Chung, D.Y.; Osborn, R.; Delaire, O.; Rosenkranz, S.; Kanatzidis, M.G.; Nature Materials (July 2021) https://doi.org/10.1038/s41563-021-01053-9  
  19. Single-Atom Catalysts as Promising Cathode Materials for Lithium-Sulfur Batteries; Andritsos, E.I.; Lekakou, C.; Cai, Q.; Journal of Physical Chemistry C (Aug 2021) https://doi.org/10.1021/acs.jpcc.1c04491  
  20. Electrochemistry of redox-active molecules confined within narrow carbon nanotubes; Jordan, J.W.; Townsend, W.J.V.; Johnson, L.R.; Walsh, D.A.; Newton, G.N.; Khlobystov, A.N.; Chemical Society Reviews (Aug 2021) https://doi.org/10.1039/d1cs00478f  
  21. PIM-1 as a Multifunctional Framework to Enable High-Performance Solid-State Lithium–Sulfur Batteries; Ji, Y.; Yang, K.; Liu, M.; Chen, S.; Liu, X.; Yang, B.; Wang, Z.; Huang, W.; Song, Z.; Xue, S.; Fu, Y.; Yang, L.; Miller, T.S.; Pan, F.; Advanced Functional Materials (Aug 2021) https://doi.org/10.1002/adfm.202104830  
  22. Characterizing Batteries by In Situ Electrochemical Atomic Force Microscopy: A Critical Review; Zhang, Z.; Said, S.; Smith, K.; Jervis, R.; Howard, C.A.; Shearing, P.R.; Brett, D.J.L.; Miller, T.S.; Advanced Energy Materials (Sept 2021) https://doi.org/10.1002/aenm.202101518  (See also Degradation) 
  23. The case for fluoride-ion batteries; Xiao, A.W.; Galatolo, G.; Pasta, M.; Joule (Oct 2021) https://doi.org/10.1016/j.joule.2021.09.016  (See also SOLBAT) 
  24. Structural complexity in Prussian blue analogues; Cattermull, J.; Pasta, M.; Goodwin, A.L.; Materials Horizons (Oct 2021) https://doi.org/10.1039/d1mh01124c (See also SOLBAT) 
  25. Effect of graphene flake size on functionalisation: Quantifying reaction extent and imaging locus with single Pt atom tags; Rubio, N.; Au, H.; Coulter, G.O.; Guetaz, L.; Gebel, G.; Mattevi, C.; Shaffer, M.S.P.; Chemical Science (Oct 2021) https://doi.org/10.1039/D1SC01958A    
  26. Stabilization of Polyoxometalate Charge Carriers via Redox-Driven Nanoconfinement in Single-Walled Carbon Nanotubes; Jordan, J.W.; Cameron, J.M.; Lowe, G.A.; Rance, G.A.; Fung, K.L.Y.; Johnson, L.R.; Walsh, D.A.; Khlobystov, A.N.; Newton, G.N.; Angewandte Chemie – International Edition (Dec 2021) https://doi.org/10.1002/anie.202115619  
  27. Characteristics of a gold-doped electrode for application in high-performance lithium-sulfur battery; Marangon, V.; Di Lecce, D.; Brett, D.J.L.; Shearing, P.R.; Hassoun, J.; Journal of Energy Chemistry (Jan 2022) https://doi.org/10.1016/j.jechem.2021.04.025  
  28. A systematic investigation of internal physical and chemical changes of lithium-ion batteries during overcharge; Mao, N.; Zhang, T.; Wang, Z.; Cai, Q.; Journal of Power Sources (Jan 2022) https://doi.org/10.1016/j.jpowsour.2021.230767  
  29. Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery; Dong, S.; Yang, S.; Chen, Y.; Kuss, C.; Cui, G.; Johnson, L.R.; Gao, X.; Bruce, P.G.; Joule (Jan 2022) https://doi.org/10.1016/j.joule.2021.12.012  
  30. In-situ X-ray tomographic imaging study of gas and structural evolution in a commercial Li-ion pouch cell; Du, W.; Owen, R.E.; Jnawali, A.; Neville, T.P.; Iacoviello, F.; Zhang, Z.; Liatard, S.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Feb 2022) https://doi.org/10.1016/j.jpowsour.2021.230818  (See also Degradation, SafeBatt) 
  31. Operando characterization of active surface area and passivation effects on sulfur-carbon composites for lithium-sulfur batteries; Li, H.; Lampkin, J.; Chien, Y.-C.; Furness, L.; Brandell, D.; Lacey, M.J.; Garcia-Araez, N.; Electrochimica Acta (Jan 2022) https://doi.org/10.1016/j.electacta.2021.139572  
  32. Gently does it!: in situ preparation of alkali metal-solid electrolyte interfaces for photoelectron spectroscopy; Gibson, J.S.; Narayanan, S.; Swallow, J.E.N.; Kumar-Thakur, P.; Pasta, M.; Lee, T.-L.; Weatherup, R.S.; Faraday Discussions (Jan 2022) https://doi.org/10.1039/d1fd00118c (See also SOLBAT, Characterisation) 
  33. Insights into the Transport and Thermodynamic Properties of a Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte for Battery Applications; Fawdon, J.; Rees, G.J.; La Mantia, F.; Pasta, M.; Journal of Physical Chemistry Letters (Feb 2022) https://doi.org/10.1021/acs.jpclett.1c04246 (See also SOLBAT) 
  34. Sulfur infiltration and allotrope formation in porous cathode hosts for lithium-sulfur batteries; Grabe, S.; Baboo, J.P.; Tennison, S.; Zhang, T.; Lekakou, C.; Andritsos, E.I.; Cai, Q.; Downes, S.; Hinder, S.; Watts, J.F.; AIChE Journal (Feb 2022) https://doi.org/10.1002/aic.17638  
  35. Beyond Li-ion batteries: performance, materials diversification, and sustainability; Au, H.; Crespo-Ribadeneyra, M.; Titirici, M.-M.; One Earth (March 2022) https://doi.org/10.1016/j.oneear.2022.02.014  
  36. Kinetics of sulphur dissolution in lithium-sulphur batteries; Dent, M.; Jakubczyk, E.; Zhang, T.; Lekakou, C.; JPhys Energy (March 2022) https://doi.org/10.1088/2515-7655/ac521d  
  37. A Comparative Techno-Economic and Lifecycle Analysis of Biomass-Derived Anode Materials for Lithium- and Sodium-Ion Batteries; Trotta, F.; Wang, G.J.; Guo, Z.; Xu, Z.; Crespo Ribadeneyra, M.; Au, H.; Edge, J.S.; Titirici, M.M.; Lander, L.; Advanced Sustainable Systems (April 2022) https://doi.org/10.1002/adsu.202200047  
  38. Operando Ultrasonic Monitoring of Lithium-Ion Battery Temperature and Behaviour at Different Cycling Rates and under Drive Cycle Conditions; Owen, R.E.; Robinson, J.B.; Weaving, J.S.; Pham, M.T.M.; Tranter, T.G.; Neville, T.P.; Billson, D.; Braglia, M.; Stocker, R.; Tidblad, A.A.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (April 2022) https://doi.org/10.1149/1945-7111/ac6833 (See also MSM, Degradation, SafeBatt, ReLIB) 
  39. Investigation of the Effect of Temperature on Lithium-Sulfur Cell Cycle Life Performance Using System Identification and X-Ray Tomography; Shateri, N.; Auger, D.J.; Fotouhi, A.; Brighton, J.; Du, W.; Owen, R.E.; Brett, D.J.L.; Shearing, P.R.; Batteries and Supercaps (April 2022) https://doi.org/10.1002/batt.202200035  
  40. A comprehensive numerical study on electrochemical-thermal models of a cylindrical lithium-ion battery during discharge process; He, T.; Zhang, T.; Wang, Z.; Cai, Q.; Applied Energy (May 2022) https://doi.org/10.1016/j.apenergy.2022.118797  
  41. Atomic-Scale Design of Anode Materials for Alkali Metal (Li/Na/K)-Ion Batteries: Progress and Perspectives; Olsson, E.; Yu, J.; Zhang, H.; Cheng, H.-M.; Cai, Q.; Advanced Energy Materials (May 2022) https://doi.org/10.1002/aenm.202200662  
  42. Toward Rigorous Validation of Li-S Battery Models; Cornish, M.; Marinescu, M.; Journal of the Electrochemical Society (June 2022) https://doi.org/10.1149/1945-7111/ac7750  
  43. Optimizing the Crystallinity of Li1.5al0.5ge1.5(Po4)3 Oxide Electrolytes for the Enhanced Performance in All-Solid-State Lithium-Sulfur Batteries; Ma, Q.; Wang, J.; Sun, S.; Ma, M.; Yao, X.; Cai, Q.; Li, J.; Chen, X.; Wang, Z.; Zhuang, R.; Mu, P.; Liu, J.; Yan, W.; SSRN (July 2022) https://doi.org/10.2139/ssrn.4176039 (See also SOLBAT) 
  44. Precisely visit the performance modulation of functionalized separator in Li-S batteries via consecutive multiscale analysis; Hao, Z.; Chen, J.; Lu, X.; Kang, L.; Tan, C.; Xu, R.; Yuan, L.; Brett, D.J.L.; Shearing, P.R.; Wang, F.R.; Huang, Y.; Energy Storage Materials (Aug 2022) https://doi.org/10.1016/j.ensm.2022.04.003  
  45. The sustainable materials roadmap; Titirici, M.; Baird, S.G.; Sparks, T.D.; Yang, S.M.; Brandt-Talbot, A.; Hosseinaei, O.; Harper, D.P.; Parker, R.M.; Vignolini, S.; Berglund, L.A.; Li, Y.; Gao, H.-L.; Mao, L.-B.; Yu, S.-H.; Díez, N.; Ferrero, G.A.; Sevilla, M.; Szilágyi, P.i.; Stubbs, C.J.; Worch, J.C.; Huang, Y.; Luscombe, C.K.; Lee, K.-Y.; Luo, H.; Platts, M.J.; Tiwari, D.; Kovalevskiy, D.; Fermin, D.J.; Au, H.; Alptekin, H.; Crespo-Ribadeneyra, M.; Ting, V.P.; Fellinger, T.-P.; Barrio, J.; Westhead, O.; Roy, C.; Stephens, I.E.L.; Nicolae, S.A.; Sarma, S.C.; Oates, R.P.; Wang, C.-G.; Li, Z.; Loh, X.J.; Myers, R.J.; Heeren, N.; Grégoire, A.; Périssé, C.; Zhao, X.; Vodovotz, Y.; Earley, B.; Finnveden, G.; Björklund, A.; Harper, G.D.J.; Walton, A.; Anderson, P.A.; JPhys Materials (Aug 2022) https://doi.org/10.1088/2515-7639/ac4ee5 (See also ReLIB) 
  46. Enflurane Additive for Sodium Negative Electrodes; Akkisetty, B.; Dimogiannis, K.; Searle, J.; Rogers, D.; Newton, G.N.; Johnson, L.R.; ACS Applied Materials and Interfaces (Aug 2022) https://doi.org/10.1021/acsami.2c06502  
  47. Investigating the Role of Surface Roughness and Defects on EC Breakdown, as a Precursor to SEI Formation in Hard Carbon Sodium-Ion Battery Anodes; Olsson, E.; Cottom, J.; Alptekin, H.; Au, H.; Crespo-Ribadeneyra, M.; Titirici, M.-M.; Cai, Q.; Small (Aug 2022) https://doi.org/10.1002/smll.202200177  
  48. Conducting Polymers Meet Lithium–Sulfur Batteries: Progress, Challenges, and Perspectives; Chen, X.; Zhao, C.; Yang, K.; Sun, S.; Bi, J.; Zhu, N.; Cai, Q.; Wang, J.; Yan, W.; Energy and Environmental Materials (Aug 2022) https://doi.org/10.1002/eem2.12483  
  49. Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth; Wang, J.; Ma, Q.; Sun, S.; Yang, K.; Cai, Q.; Olsson, E.; Chen, X.; Wang, Z.; Abdelkader, A.M.; Li, Y.; Yan, W.; Ding, S.; Xi, K.; eScience (Sept 2022) https://doi.org/10.1016/j.esci.2022.09.001  
  50. Correlative electrochemical acoustic time-of-flight spectroscopy and X-ray imaging to monitor the performance of single-crystal and polycrystalline NMC811/Gr lithium-ion batteries; Michael, H.; Owen, R.E.; Robinson, J.B.; Heenan, T.M.M.; Tan, C.; Wade, A.J.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Sept 2022) https://doi.org/10.1016/j.jpowsour.2022.231775 (See also Degradation) 
  51. Pseudohexagonal Nb2O5-Decorated Carbon Nanotubes as a High-Performance Composite Anode for Sodium Ion Batteries; Chen, G.; Chen, J.; Parkin, I.P.; He, G.; Miller, T.S.; ChemElectroChem (Sept 2022) https://doi.org/10.1002/celc.202200800  
  52. Lithium-sulfur battery diagnostics through distribution of relaxation times analysis; Soni, R.; Robinson, J.B.; Shearing, P.R.; Brett, D.J.L.; Rettie, A.J.E.; Miller, T.S.; Energy Storage Materials (Oct 2022) https://doi.org/10.1016/j.ensm.2022.06.016  
  53. Mechanics of lithium metal at the nanoscale; Aspinall, J.; Armstrong, D.E.J.; Pasta, M.; ChemRxiv (Oct 2022) https://doi.org/10.26434/chemrxiv-2022-drhkn-v2 (See also SOLBAT)   
  54. EBSD-coupled indentation: nanoscale mechanics of lithium metal; Aspinall, J.; Armstrong, D.E.J.; Pasta, M.; Materials Today Energy (Oct 2022) https://doi.org/10.1016/j.mtener.2022.101183  
  55. An Image Based 3D Modelling Framework for Li-S Batteries; Dai, X.; Kulkarni, N.; Robinson, J.B.; Brett, D.J.L; Shearing, P.R.; Jervis, R. ; ChemRxiv (Oct 2022) https://doi.org/10.26434/chemrxiv-2022-2ktc5-v2  
  56. Battery state-of-charge estimation using machine learning analysis of ultrasonic signatures; Galiounas, E.; Tranter, T.G.; Owen, R.E.; Robinson, J.B.; Shearing, P.R.; Brett, D.J.L.; Energy and AI (Nov 2022) https://doi.org/10.1016/j.egyai.2022.100188  
  57. Dilithium phthalocyanine as electrolyte additive for the regulation of ion solvation and transport towards dendrite-free Li metal anodes; Li, X.; Fu, Z.; Wang, J.; Zhao, X.; Zhang, Y.; Liu, W.; Cai, Q.; Hu, C.; Chemical Engineering Journal (Dec 2022) https://doi.org/10.1016/j.cej.2022.138112  
  58. Visualising coke-induced degradation of catalysts used for CO2-reforming of methane with X-ray nano-computed tomography; Owen, R.E.; Zhang, Y.S.; Neville, T.P.; Manos, G.; Shearing, P.R.; Brett, D.J.L.; Bailey, J.J.; Carbon Capture Science and Technology (Dec 2022) https://doi.org/10.1016/j.ccst.2022.100068  
  59. DFT Simulation-Based Design of 1T-MoS2 Cathode Hosts for Li-S Batteries and Experimental Evaluation; Hojaji, E.; Andritsos, E.I.; Li, Z.; Chhowalla, M.; Lekakou, C.; Cai, Q.; International Journal of Molecular Sciences (Dec 2022) https://doi.org/10.3390/ijms232415608  
  60. Thin Solid Electrolyte Separators for Solid-State Lithium-Sulfur Batteries; Kim, S.; Chart, Y.A.; Narayanan, S.; Pasta, M.; Nano Letters (Dec 2022) https://doi.org/10.1021/acs.nanolett.2c04216  
  61. Revealing the thermal stability and component heat contribution ratio of overcharged lithium-ion batteries during thermal runaway; Mao, N.; Zhang, T.; Wang, Z.; Gadkari, S.; Wang, J.; He, T.; Gao, T.; Cai, Q.; Energy (Jan 2023) https://doi.org/10.1016/j.energy.2022.125786  
  62. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries; Li, Z.; Sami, I.; Yang, J.; Li, J.; Kumar, R.V.; Chhowalla, M.; Nature Energy (Jan 2023) https://doi.org/10.1038/s41560-022-01175-7  
  63. Doping carbon electrodes with sulfur achieves reversible sodium ion storage; de Tomas, C.; Alabidun, S.; Chater, L.; Darby, M.T.; Raffone, F.; Restuccia, P.; Au, H.; Titirici, M.M.; Cucinotta, C.S.; Crespo-Ribadenyra, M.; JPhys Energy (Jan 2023) https://doi.org/10.1088/2515-7655/acb570  
  64. Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries; Liu, M.; Yao, L.; Ji, Y.; Zhang, M.; Gan, Y.; Cai, Y.; Li, H.; Zhao, W.; Zhao, Y.; Zou, Z.; Qin, R.; Wang, Y.; Liu, L.; Liu, H.; Yang, K.; Miller, T.S.; Pan, F.; Yang, J.; Nano Letters (Jan 2023) https://doi.org/10.1021/acs.nanolett.2c03919  
  65. Self‐Assembled Surfactant‐Polyoxovanadate Soft Materials as Tuneable Vanadium Oxide Cathode Precursors for Lithium‐Ion Batteries; McNulty, R.; Penston, K.; Amin, S.; Stal, S.; Lee, J.Y; Samperi, M.; Perez-Garcia, L.; Cameron, J.; Johnson, L.; Amabilino, D.; Angewandte Chemie (Jan 2023) https://doi.org/10.1002/ange.202216066  
  66. Advances in thermal-related analysis techniques for solid-state lithium batteries; Wang, J.; Yang, K.; Sun, S.; Ma, Q.; Yi, G.; Chen, X.; Wang, Z.; Yan, W.; Liu, X.; Cai, Q.; Zhao, Y.; InfoMat (Feb 2023) https://doi.org/10.1002/inf2.12401  
  67. An investigation on thermal runaway behaviour of a cylindrical lithium-ion battery under different states of charge based on thermal tests and a three-dimensional thermal runaway model; He, T.; Zhang, T.; Gadkari, S.; Wang, Z.; Mao, N.; Cai, Q.; Journal of Cleaner Production (Feb 2023) https://doi.org/10.1016/j.jclepro.2023.135980  
  68. Solubility and dissolution kinetics of sulfur and sulfides in electrolyte solvents for lithium-sulfur and sodium-sulfur batteries; Adeoye, H.A.; Dent, M.; Watts, J.F.; Tennison, S.; Lekakou, C.; Journal of Chemical Physics (Feb 2023) https://doi.org/10.1063/5.0132068  
  69. Investigation and Determination of Electrochemical Reaction Kinetics in Lithium-Sulfur Batteries with Electrolyte LiTFSI in DOL/DME; Grabe, S.; Dent, M.; Babar, S.; Zhang, T.; Tennison, S.; Watts, J.F.; Lekakou, C.; Journal of the Electrochemical Society (Feb 2023) https://doi.org/10.1149/1945-7111/acbca6  
  70. Engineering Solution-Processed Non-Crystalline Solid Electrolytes for Li Metal Batteries; Vadhva, P.; Gill, T.E.; Cruddos, J.H.; Said, S.; Siniscalchi, M.; Narayanan, S.; Pasta, M.; Miller, T.S.; Rettie, A.J.E.; Chemistry of Materials (Feb 2023) https://doi.org/10.1021/acs.chemmater.2c03071 (See also SOLBAT) 
  71. Sodiation energetics in pore size controlled hard carbons determined via entropy profiling; Mercer, M.P.; Nagarathinam, M.; Gavilán-Arriazu, E.M.; Binjrajka, A.; Panda, S.; Au, H.; Crespo-Ribadeneyra, M.; Titirici, M.-M.; Leiva, E.P.M.; Hoster, H.E.; Journal of Materials Chemistry A (Feb 2023) https://doi.org/10.1039/D2TA09406A (See also MSM) 
  72. Pseudohexagonal Nb2O5 Anodes for Fast-Charging Potassium-Ion Batteries; Chen, G.; Chen, J.; Zhao, S.; He, G.; Miller, T.S.; ACS Applied Materials and Interfaces (March 2023) https://doi.org/10.1021/acsami.2c21490  
  73. Black Phosphorus Degradation during Intercalation and Alloying in Batteries; Said, S.; Zhang, Z.; Shutt, R.R.C.; Lancaster, H.J.; Brett, D.J.L.; Howard, C.A.; Miller, T.S.; ACS Nano (March 2023) https://doi.org/10.1021/acsnano.2c08776  
  74. Observation of Zn Dendrite Growth via Operando Digital Microscopy and Time-Lapse Tomography; Du, W.; Zhang, Z.; Iacoviello, F.; Zhou, S.; Owen, R.E.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; ACS Applied Materials and Interfaces (March 2023) https://doi.org/10.1021/acsami.2c19895  
  75. Voltammetric Evidence of Proton Transport through the Sidewalls of Single-Walled Carbon Nanotubes; Jordan, J.W.; Mortiboy, B.; Khlobystov, A.N.; Johnson, L.R.; Newton, G.N.; Walsh, D.A.; Journal of the American Chemical Society (March 2023) https://doi.org/10.1021/jacs.3c00554  
  76. Hydroperoxide-Mediated Degradation of Acetonitrile in the Lithium–Air Battery; McNulty, R.C.; Jones, K.D.; Holc, C.; Jordan, J.W.; Bruce, P.G.; Walsh, D.A.; Newton, G.N.; Lam, H.W.; Johnson, L.R.; Advanced Energy Materials (May 2023) https://doi.org/10.1002/aenm.202300579  
  77. Deploying Proteins as Electrolyte Additives in Li-S Batteries: The Multifunctional Role of Fibroin in Improving Cell Performance; Soni, R.; Spadoni, D.; Shearing, P.R.; Brett, D.J.L.; Lekakou, C.; Cai, Q.; Robinson, J.B.; Miller, T.S.; ACS Applied Energy Materials (May 2023) https://doi.org/10.1021/acsaem.2c04131  
  78. Combining multi-modal non-destructive techniques to investigate ageing and orientation effects in automotive Li-ion pouch cells; Fordham, A.; Milojevic, Z.; Giles, E.; Du, W.; Owen, R.E.; Michalik, S.; Chater, P.; Das, P.; Attidekou, P.; Lambert, S.; Allan, P.; Slater, P.R.; Anderson, P.; Jervis, R.; Shearing, P.R.; Brett, D.J.; ChemRxiv (May 2023) https://doi.org/10.26434/chemrxiv-2023-cghv4 (See also ReLIB, CATMAT, SafeBatt) 
  79. A comparative analysis of lithium-ion batteries with different cathodes under overheating and nail penetration conditions; Mao, N.; Gadkari, S.; Wang, Z.; Zhang, T.; Bai, J.; Cai, Q.; Energy (June 2023) https://doi.org/10.1016/j.energy.2023.128027  
  80. Establishing highly efficient absorptive and catalytic network for depolarized high-stability lithium-sulfur batteries; Wang, J.; Chen, X.; Wang, Z.; Lin, C.; Sun, S.; Liu, J.; Liu, Y.; Ma, Q.; Wang, L.; Yang, K.; Feng, J.; Wang, X.; Cai, Q.; Yan, W.; Chemical Engineering Journal (June 2023) https://doi.org/10.1016/j.cej.2023.142657  
  81. Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation; Ahn, S.; Zor, C.; Yang, S.; Lagnoni, M.; Dewar, D.; Nimmo, T.; Chau, C.; Jenkins, M.; Kibler, A.J.; Pateman, A.; Rees, G.J.; Gao, X.; Adamson, P.; Grobert, N.; Bertei, A.; Johnson, L.R.; Bruce, P.G.; Nature Chemistry (June 2023) https://doi.org/10.1038/s41557-023-01203-3  
  82. Insights into Soft Short Circuit-based Degradation of Lithium Metal Batteries; Menkin, S.; Fritzke, J.B.; Larner, R.; de Leeuw, C.; Choi, Y.; Gunnarsdóttir, A.B.; Grey, C.P.; Faraday Discussions (June 2023) https://doi.org/10.1039/D3FD00101F  
  83. Electrode Materials for Enhancing the Performance and Cycling Stability of Zinc Iodide Flow Batteries at High Current Densities; ShakeriHosseinabad, F.; Frost, B.; Said, S.; Xu, C.; Behnoudfar, D.; Amini, K.; Momodu, D.; Mahinpey, N.; Egberts, P.; Miller, T.S.; Roberts, E.P.; ACS Applied Materials and Interfaces (July 2023) https://doi.org/10.1021/acsami.3c03785   
  84. 2023 roadmap on molecular modelling of electrochemical energy materials; Zhang, C.; Cheng, J.; Chen, Y.; Chan, M.; Cai, Q.; Carvalho, R.P.; Marchiori, C.F.N.; Brandell, D.; Moyses Araujo, C.; Chen, M.; Ji, X.; Feng, G.; Goloviznina, K.; Serva, A.; Salanne, M.; Mandai, T.; Hosaka, T.; Alhanash, M.; Johansson, P.; Qiu, Y.; Xiao, H.; Eikerling, M.H.; Jinnouchi, R.; Melander, M.M.; Kastlunger, G.; Bouzid, A.; Pasquarello, A.; Shin, S.J.; Kim, M.M.; Kim, H.; Schwarz, K.; Sundararaman, R.; JPhys Energy (Sept 2023) https://doi.org/10.1088/2515-7655/acfe9b  
  85. Solid electrolyte interphases in lithium metal batteries; Jagger, B.; Pasta, M.; Joule (Sept 2023) https://doi.org/10.1016/j.joule.2023.08.007 (See also SOLBAT)