A full list of publications to from the Multi-Scale Modelling project to October 2023 can be found here.

  1. Quantifying structure dependent responses in Li-ion cells with excess Li spinel cathodes: Matching voltage and entropy profiles through mean field models; Schlueter, S.; Genieser, R.; Richards, D.; Hoster, H.E.; Mercer, M.P.; Physical Chemistry Chemical Physics (July 2018) https://doi.org/10.1039/c8cp02989j  
  2. Controlled hydroxy-fluorination reaction of anatase to promote Mg2+ mobility in rechargeable magnesium batteries; Ma, J.; Koketsu, T.; Morgan, B.J.; Legein, C.; Body, M.; Strasser, P.; Dambournet, D.; Chemical Communications (Aug 2018) https://doi.org/10.1039/c8cc04136a  
  3. Formation of the Solid Electrolyte Interphase at Constant Potentials: A Model Study on Highly Oriented Pyrolytic Graphite; Antonopoulos, B.K.; Maglia, F.; Schmidt-Stein, F.; Schmidt, J.P.; Hoster, H.E.; Batteries and Supercaps (Sept 2018) https://doi.org/10.1002/batt.201800029  
  4. Correlated Polyhedral Rotations in the Absence of Polarons during Electrochemical Insertion of Lithium in ReO3; Bashian, N.H.; Zhou, S.; Zuba, M.; Ganose, A.M.; Stiles, J.W.; Ee, A.; Ashby, D.S.; Scanlon, D.O.; Piper, L.F.J.; Dunn, B.; Melot, B.C.; ACS Energy Letters (Sept 2018) https://doi.org/10.1021/acsenergylett.8b01179 
  5. Modeling the effects of thermal gradients induced by tab and surface cooling on lithium ion cell performance; Zhao, Y.; Patel, Y.; Zhang, T.; Offer, G.J.; Journal of the Electrochemical Society (Oct 2018) https://doi.org/10.1149/2.0901813jes 
  6. Oxidation states and ionicity; Walsh, A.; Sokol, A.A.; Buckeridge, J.; Scanlon, D.O.; Catlow, C.R.A.; Nature Materials (Oct 2018) https://doi.org/10.1038/s41563-018-0165-7 
  7. Quick-start guide for first-principles modelling of semiconductor interfaces; Park, J.-S.; Jung, Y.-K.; Butler, K.T.; Walsh, A.; JPhys Energy (Nov 2018) https://doi.org/10.1088/2515-7655/aad928 
  8. 4D visualisation of: In situ nano-compression of Li-ion cathode materials to mimic early stage calendering; Daemi, S.R.; Lu, X.; Sykes, D.; Behnsen, J.; Tan, C.; Palacios-Padros, A.; Cookson, J.; Petrucco, E.; Withers, P.J.; Brett, D.J.L.; Shearing, P.R.; Materials Horizons (Dec 2018) https://doi.org/10.1039/c8mh01533c (See also MSM) 
  9. Impact of Anion Vacancies on the Local and Electronic Structures of Iron-Based Oxyfluoride Electrodes; Burbano, M.; Duttine, M.; Morgan, B.J.; Borkiewicz, O.J.; Chapman, K.W.; Wattiaux, A.; Demourgues, A.; Groult, H.; Salanne, M.; Dambournet, D.; Journal of Physical Chemistry Letters (Dec 2018) https://doi.org/10.1021/acs.jpclett.8b03503 
  10. Aligned Ionogel Electrolytes for High-Temperature Supercapacitors; Liu, X.; Taiwo, O.O.; Yin, C.; Ouyang, M.; Chowdhury, R.; Wang, B.; Wang, H.; Wu, B.; Brandon, N.P.; Wang, Q.; Cooper, S.J.; Advanced Science (Jan 2019) https://doi.org/10.1002/advs.201801337 
  11. pyscses: a PYthon Space-Charge Site-Explicit Solver; Wellock, G.; Morgan, B.; Journal of Open Source Software (March 2019) https://doi.org/10.21105/joss.01209 
  12. Incorporating dendrite growth into continuum models of electrolytes: Insights from NMR measurements and inverse modeling; Sethurajan, A.K.; Foster, J.M.; Richardson, G.; Krachkovskiy, S.A.; David Bazak, J.; Goward, G.R.; Protas, B.; Journal of the Electrochemical Society (May 2019) https://doi.org/10.1149/2.0921908jes 
  13. crystal-torture: A crystal tortuosity module; O’Rourke, C.; Morgan, B. ; Journal of Open Source Software (June 2019) https://doi.org/10.21105/joss.01306 
  14. Faster lead-acid battery simulations from porous-electrode theory: Part I. Physical model; Sulzer, V.; Chapman, S.J.; Please, C.P.; Howey, D.A.; Monroe, C.W.; Journal of the Electrochemical Society (July 2019) https://doi.org/10.1149/2.0301910jes 
  15. Faster lead-acid battery simulations from porous-electrode theory: Part II. Asymptotic analysis; Sulzer, V.; Chapman, S.J.; Please, C.P.; Howey, D.A.; Monroe, C.W.; Journal of the Electrochemical Society (July 2019) https://doi.org/10.1149/2.0441908jes 
  16. The cell cooling coefficient: A standard to define heat rejection from lithium-ion batteries; Hales, A.; Diaz, L.B.; Marzook, M.W.; Zhao, Y.; Patel, Y.; Offer, G.; Journal of the Electrochemical Society (July 2019) https://doi.org/10.1149/2.0191912jes 
  17. Communication—why high-precision coulometry and lithium plating studies on commercial lithium-ion cells require thermal baths; Zülke, A.; Li, Y.; Keil, P.; Hoster, H.; Journal of the Electrochemical Society (Aug 2019) https://doi.org/10.1149/2.0841913jes 
  18. How to cool lithium ion batteries: Optimising Cell Design using a Thermally Coupled Model; Zhao, Y.; Diaz, L.B.; Patel, Y.; Zhang, T.; Offer, G.J.; Journal of the Electrochemical Society (Aug 2019) https://doi.org/10.1149/2.0501913jes 
  19. Virtual unrolling of spirally-wound lithium-ion cells for correlative degradation studies and predictive fault detection; Kok, M.D.R.; Robinson, J.B.; Weaving, J.S.; Jnawali, A.; Pham, M.; Iacoviello, F.; Brett, D.J.L.; Shearing, P.R.; Sustainable Energy and Fuels (Aug 2019) https://doi.org/10.1039/c9se00500e (See also Degradation) 
  20. Lithium-ion battery fast charging: A review; Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; Li, Y.; Zheng, S.; Vetterlein, S.; Gao, M.; Du, J.; Parkes, M.; Ouyang, M.; Marinescu, M.; Offer, G.; Wu, B.; eTransportation (Aug 2019) https://doi.org/10.1016/j.etran.2019.100011 
  21. The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs; Liu, X.; Ai, W.; Naylor Marlow, M.; Patel, Y.; Wu, B.; Applied Energy (Aug 2019) https://doi.org/10.1016/j.apenergy.2019.04.108 
  22. Highly Anisotropic Thermal Transport in LiCoO2; Yang, H.; Yang, J.-Y.; Savory, C.N.; Skelton, J.M.; Morgan, B.J.; Scanlon, D.O.; Walsh, A.; Journal of Physical Chemistry Letters (Sept 2019) https://doi.org/10.1021/acs.jpclett.9b02073 
  23. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review; Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E.; Renewable and Sustainable Energy Reviews (Oct 2019) https://doi.org/10.1016/j.rser.2019.109254 
  24. Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells; Ai, W.; Kraft, L.; Sturm, J.; Jossen, A.; Wu, B.; Journal of the Electrochemical Society (Oct 2019) https://doi.org/10.1149/2.0122001JES 
  25. An asymptotic derivation of a single particle model with electrolyte; Marquis, S.G.; Sulzer, V.; Timms, R.; Please, C.P.; Jon Chapman, S.; Journal of the Electrochemical Society (Nov 2019) https://doi.org/10.1149/2.0341915jes 
  26. Battery Safety: Data-Driven Prediction of Failure; Finegan, D.P.; Cooper, S.J.; Joule (Nov 2019) https://doi.org/10.1016/j.joule.2019.10.013 
  27. Transitions of lithium occupation in graphite: A physically informed model in the dilute lithium occupation limit supported by electrochemical and thermodynamic measurements; Mercer, M.P.; Otero, M.; Ferrer-Huerta, M.; Sigal, A.; Barraco, D.E.; Hoster, H.E.; Leiva, E.P.M.; Electrochimica Acta (Nov 2019) https://doi.org/10.1016/j.electacta.2019.134774 
  28. Multi-scale electrolyte transport simulations for lithium ion batteries; Hanke, F.; Modrow, N.; Akkermans, R.L.C.; Korotkin, I.; Mocanu, F.C.; Neufeld, V.A.; Veit, M.; Journal of the Electrochemical Society (Nov 2019) https://doi.org/10.1149/2.0222001JES 
  29. Smart and Hybrid Balancing System: Design, Modeling, and Experimental Demonstration; De Castro, R.; Pinto, C.; Varela Barreras, J.; Araujo, R.E.; Howey, D.A.; IEEE Transactions on Vehicular Technology (Dec 2019) https://doi.org/10.1109/TVT.2019.2929653 
  30. Effect of temperature on the kinetics of electrochemical insertion of li-ions into a graphite electrode studied by kinetic Monte Carlo; Gavilán-Arriazu, E.M.; Mercer, M.P.; Pinto, O.A.; Oviedo, O.A.; Barraco, D.E.; Hoster, H.E.; Leiva, E.P.M.; Journal of the Electrochemical Society (Dec 2019) https://doi.org/10.1149/2.0332001JES 
  31. Descriptors for Electron and Hole Charge Carriers in Metal Oxides; Davies, D.W.; Savory, C.N.; Frost, J.M.; Scanlon, D.O.; Morgan, B.J.; Walsh, A.; Journal of Physical Chemistry Letters (Dec 2019) https://doi.org/10.1021/acs.jpclett.9b03398 
  32. Native Defects and Their Doping Response in the Lithium Solid Electrolyte Li7La3Zr2O12; Squires, A.G.; Scanlon, D.O.; Morgan, B.J.; Chemistry of Materials (Dec 2019) https://doi.org/10.1021/acs.chemmater.9b04319 
  33. The Surface Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium Ion Battery Pouch Cells; Hales, A.; Marzook, M.W.; Bravo Diaz, L.; Patel, Y.; Offer, G.; Journal of the Electrochemical Society (Jan 2020) https://doi.org/10.1149/1945-7111/ab6985 
  34. Mechanics of the Ideal Double-Layer Capacitor; Monroe, C.W.; Journal of the Electrochemical Society (Feb 2020) https://doi.org/10.1149/1945-7111/ab6b04 (See also SOLBAT) 
  35. Composition-dependent thermodynamic and mass-transport characterization of lithium hexafluorophosphate in propylene carbonate; Hou, T.; Monroe, C.W.; Electrochimica Acta (Feb 2020) https://doi.org/10.1016/j.electacta.2019.135085 
  36. Python Battery Mathematical Modelling (PyBaMM); Sulzer, V.; Marquis, S.G.; Timms, R.; Robinson, M.; Chapman, S.J.; ECSarXiv (Feb 2020) https://doi.org/10.1149/osf.io/67ckj 
  37. A Python Package to Preprocess the Data Produced by Novonix High-Precision Battery-Testers; Gonzalez-Perez, V.; Keil, P.; Li, Y.; Zülke, A.; Burrel, R.; Csala, D.; Hoster, H.; Journal of Open Research Software (March 2020) https://doi.org/10.5334/jors.281 
  38. Exploiting cationic vacancies for increased energy densities in dual-ion batteries; Koketsu, T.; Ma, J.; Morgan, B.J.; Body, M.; Legein, C.; Goddard, P.; Borkiewicz, O.J.; Strasser, P.; Dambournet, D.; Energy Storage Materials (March 2020) https://doi.org/10.1016/j.ensm.2019.10.019 
  39. Parameterization of prismatic lithium–iron–phosphate cells through a streamlined thermal/electrochemical model; Chu, H.N.; Kim, S.U.; Rahimian, S.K.; Siegel, J.B.; Monroe, C.W.; Journal of Power Sources (March 2020) https://doi.org/10.1016/j.jpowsour.2020.227787 
  40. Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory; Dziedzic, J.; Bhandari, A.; Anton, L.; Peng, C.; Womack, J.C.; Famili, M.; Kramer, D.; Skylaris, C.-K.; Journal of Physical Chemistry C (March 2020) https://doi.org/10.1021/acs.jpcc.0c00762 
  41. Generalised single particle models for high-rate operation of graded lithium-ion electrodes: Systematic derivation and validation; Richardson, G.; Korotkin, I.; Ranom, R.; Castle, M.; Foster, J.M.; Electrochimica Acta (April 2020) https://doi.org/10.1016/j.electacta.2020.135862 
  42. Lithium intercalation edge effects and doping implications for graphite anodes; Peng, C.; Mercer, M.P.; Skylaris, C.-K.; Kramer, D.; Journal of Materials Chemistry A (April 2020) https://doi.org/10.1039/c9ta13862e 
  43. Derivation of an effective thermal electrochemical model for porous electrode batteries using asymptotic homogenisation; Hunt, M.J.; Brosa Planella, F.; Theil, F.; Widanage, W.D.; Journal of Engineering Mathematics (April 2020) https://doi.org/10.1007/s10665-020-10045-8 
  44. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling; Lu, X.; Bertei, A.; Finegan, D.P.; Tan, C.; Daemi, S.R.; Weaving, J.S.; O’Regan, K.B.; Heenan, T.M.M.; Hinds, G.; Kendrick, E.; Brett, D.J.L.; Shearing, P.R.; Nature Communications (April 2020) https://doi.org/10.1038/s41467-020-15811-x (See also Degradation) 
  45. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models; Chen, C.-H.; Brosa Planella, F.; O’Regan, K.; Gastol, D.; Widanage, W.D.; Kendrick, E.; Journal of the Electrochemical Society (May 2020) https://doi.org/10.1149/1945-7111/ab9050 
  46. Physical Origin of the Differential Voltage Minimum Associated with Lithium Plating in Li-Ion Batteries; O’Kane, S.E.J.; Campbell, I.D.; Marzook, M.W.J.; Offer, G.J.; Marinescu, M.; Journal of the Electrochemical Society (May 2020) https://doi.org/10.1149/1945-7111/ab90ac 
  47. The ONETEP linear-scaling density functional theory program; Prentice, J.C.A.; Aarons, J.; Womack, J.C.; Allen, A.E.A.; Andrinopoulos, L.; Anton, L.; Bell, R.A.; Bhandari, A.; Bramley, G.A.; Charlton, R.J.; Clements, R.J.; Cole, D.J.; Constantinescu, G.; Corsetti, F.; Dubois, S.M.-M.; Duff, K.K.B.; Escartín, J.M.; Greco, A.; Hill, Q.; Lee, L.P.; Linscott, E.; O’Regan, D.D.; Phipps, M.J.S.; Ratcliff, L.E.; Serrano, Á.R.; Tait, E.W.; Teobaldi, G.; Vitale, V.; Yeung, N.; Zuehlsdorff, T.J.; Dziedzic, J.; Haynes, P.D.; Hine, N.D.M.; Mostofi, A.A.; Payne, M.C.; Skylaris, C.-K.; Journal of Chemical Physics (May 2020) https://doi.org/10.1063/5.0004445 
  48. Chemical Trends in the Lattice Thermal Conductivity of Li(Ni,Mn,Co)O2 (NMC) Battery Cathodes; Yang, H.; Savory, C.N.; Morgan, B.J.; Scanlon, D.O.; Skelton, J.M.; Walsh, A.; ChemRxiv (May 2020) https://doi.org/10.26434/chemrxiv.12320033.v1 
  49. Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries; Gayon-Lombardo, A.; Mosser, L.; Brandon, N.P.; Cooper, S.J.; npj Computational Materials (June 2020) https://doi.org/10.1038/s41524-020-0340-7 
  50. Probing Heterogeneity in Li-Ion Batteries with Coupled Multiscale Models of Electrochemistry and Thermal Transport using Tomographic Domains; Tranter, T.G.; Timms, R.; Heenan, T.M.M.; Marquis, S.G.; Sulzer, V.; Jnawali, A.; Kok, M.D.R.; Please, C.P.; Chapman, S.J.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (July 2020) https://doi.org/10.1149/1945-7111/aba44b 
  51. Investigation of Path-Dependent Degradation in Lithium-Ion Batteries**; Raj, T.; Wang, A.A.; Monroe, C.W.; Howey, D.A.; Batteries and Supercaps (Aug 2020) https://doi.org/10.1002/batt.202000160 
  52. The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead; Nguyen, T.-T.; Demortière, A.; Fleutot, B.; Delobel, B.; Delacourt, C.; Cooper, S.J.; npj Computational Materials (Aug 2020) https://doi.org/10.1038/s41524-020-00386-4 
  53. In-situ fabrication of carbon-metal fabrics as freestanding electrodes for high-performance flexible energy storage devices; Liu, X.; Ouyang, M.; Orzech, M.W.; Niu, Y.; Tang, W.; Chen, J.; Marlow, M.N.; Puhan, D.; Zhao, Y.; Tan, R.; Colin, B.; Haworth, N.; Zhao, S.; Wang, H.; Childs, P.; Margadonna, S.; Wagemaker, M.; Pan, F.; Brandon, N.; George, C.; Wu, B.; Energy Storage Materials (Sept 2020) https://doi.org/10.1016/j.ensm.2020.04.001 
  54. Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces; Bhandari, A.; Anton, L.; Dziedzic, J.; Peng, C.; Kramer, D.; Skylaris, C.-K.; Journal of Chemical Physics (Sept 2020) https://doi.org/10.1063/5.0021210 
  55. Voltage hysteresis model for silicon electrodes for lithium ion batteries, including multi-step phase transformations, crystallization and amorphization; Jiang, Y.; Offer, G.; Jiang, J.; Marinescu, M.; Wang, H.; Journal of the Electrochemical Society (Oct 2020) https://doi.org/10.1149/1945-7111/abbbba 
  56. Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes; Wang, A.A.; Hou, T.; Karanjavala, M.; Monroe, C.W.; Electrochimica Acta (Oct 2020) https://doi.org/10.1016/j.electacta.2020.136688 
  57. A suite of reduced-order models of a single-layer lithium-ion pouch cell; Marquis, S.G.; Timms, R.; Sulzer, V.; Please, C.P.; Chapman, S.J.; Journal of the Electrochemical Society (Oct 2020) https://doi.org/10.1149/1945-7111/abbce4 
  58. The Cell Cooling Coefficient as a design tool to optimise thermal management of lithium-ion cells in battery packs; Hales, A.; Prosser, R.; Bravo Diaz, L.; White, G.; Patel, Y.; Offer, G.; eTransportation (Nov 2020) https://doi.org/10.1016/j.etran.2020.100089 
  59. Microstructural Evolution of Battery Electrodes During Calendering; Lu, X.; Daemi, S.R.; Bertei, A.; Kok, M.D.R.; O’Regan, K.B.; Rasha, L.; Park, J.; Hinds, G.; Kendrick, E.; Brett, D.J.L.; Shearing, P.R.; Joule (Nov 2020) https://doi.org/10.1016/j.joule.2020.10.010 
  60. Voltage hysteresis during lithiation/delithiation of graphite associated with meta-stable carbon stackings; Mercer, M.P.; Peng, C.; Soares, C.; Hoster, H.E.; Kramer, D.; Journal of Materials Chemistry A (Nov 2020) https://doi.org/10.1039/d0ta10403e 
  61. Communication-prediction of thermal issues for larger format 4680 cylindrical cells and their mitigation with enhanced current collection; Tranter, T.G.; Timms, R.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (Dec 2020) https://doi.org/10.1149/1945-7111/abd44f 
  62. Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-Ion Batteries; Heenan, T.M.M.; Wade, A.; Tan, C.; Parker, J.E.; Matras, D.; Leach, A.S.; Robinson, J.B.; Llewellyn, A.; Dimitrijevic, A.; Jervis, R.; Quinn, P.D.; Brett, D.J.L.; Shearing, P.R.; Advanced Energy Materials (Dec 2020) https://doi.org/10.1002/aenm.202002655 (See also Degradation) 
  63. Designer uniform Li plating/stripping through lithium–cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes; Liu, X.; Qian, X.; Tang, W.; Luo, H.; Zhao, Y.; Tan, R.; Qiao, M.; Gao, X.; Hua, Y.; Wang, H.; Zhao, S.; Lai, C.; Titirici, M.; Brandon, N.P.; Yang, S.; Wu, B.; Journal of Energy Chemistry (Jan 2021) https://doi.org/10.1016/j.jechem.2020.03.059 
  64. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks; Li, W.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U.; Journal of Power Sources (Jan 2021) https://doi.org/10.1016/j.jpowsour.2020.228863 
  65. A Shrinking-Core Model for the Degradation of High-Nickel Cathodes (NMC811) in Li-Ion Batteries: Passivation Layer Growth and Oxygen Evolution; Ghosh, A.; Foster, J.M.; Offer, G.; Marinescu, M.; Journal of the Electrochemical Society (Feb 2021) https://doi.org/10.1149/1945-7111/abdc71 
  66. Finding a better fit for lithium ion batteries: A simple, novel, load dependent, modified equivalent circuit model and parameterization method; Hua, X.; Zhang, C.; Offer, G.; Journal of Power Sources (Feb 2021) https://doi.org/10.1016/j.jpowsour.2020.229117 
  67. Generating 3D structures from a 2D slice with GAN-based dimensionality expansion; Kench, S.; Cooper, S.J.; arXiv (Feb 2021) https://doi.org/10.48550/arXiv.2102.07708 
  68. Lithium-Ion Diagnostics: The First Quantitative In-Operando Technique for Diagnosing Lithium Ion Battery Degradation Modes under Load with Realistic Thermal Boundary Conditions; Prosser, R.; Offer, G.; Patel, Y.; Journal of the Electrochemical Society (March 2021) https://doi.org/10.1149/1945-7111/abed28 
  69. Unlocking extra value from grid batteries using advanced models; Reniers, J.M.; Mulder, G.; Howey, D.A.; Journal of Power Sources (March 2021) https://doi.org/10.1016/j.jpowsour.2020.229355 
  70. How Machine Learning Will Revolutionize Electrochemical Sciences; Mistry, A.; Franco, A.A.; Cooper, S.J.; Roberts, S.A.; Viswanathan, V.; ACS Energy Letters (March 2021) https://doi.org/10.1021/acsenergylett.1c00194 
  71. Lithium ion battery degradation: what you need to know; Edge, J.S.; O’Kane, S.; Prosser, R.; Kirkaldy, N.D.; Patel, A.N.; Hales, A.; Ghosh, A.; Ai, W.; Chen, J.; Yang, J.; Li, S.; Pang, M.-C.; Bravo Diaz, L.; Tomaszewska, A.; Marzook, M.W.; Radhakrishnan, K.N.; Wang, H.; Patel, Y.; Wu, B.; Offer, G.J.; Physical Chemistry Chemical Physics (March 2021) https://doi.org/10.1039/d1cp00359c 
  72. High-Energy Nickel-Cobalt-Aluminium Oxide (NCA) Cells on Idle: Anode- versus Cathode-Driven Side Reactions; Zülke, A.; Li, Y.; Keil, P.; Burrell, R.; Belaisch, S.; Nagarathinam, M.; Mercer, M.P.; Hoster, H.E.; Batteries and Supercaps (March 2021) https://doi.org/10.1002/batt.202100046 
  73. Optimal cell tab design and cooling strategy for cylindrical lithium-ion batteries; Li, S.; Kirkaldy, N.; Zhang, C.; Gopalakrishnan, K.; Amietszajew, T.; Diaz, L.B.; Barreras, J.V.; Shams, M.; Hua, X.; Patel, Y.; Offer, G.J.; Marinescu, M.; Journal of Power Sources (April 2021) https://doi.org/10.1016/j.jpowsour.2021.229594 
  74. Towards the digitalisation of porous energy materials: Evolution of digital approaches for microstructural design; Niu, Z.; Pinfield, V.J.; Wu, B.; Wang, H.; Jiao, K.; Leung, D.Y.C.; Xuan, J.; Energy and Environmental Science (April 2021) https://doi.org/10.1039/d1ee00398d 
  75. Asymptotic reduction of a lithium-ion pouch cell model; Timms, R.; Marquis, S.G.; Sulzer, V.; Please, C.P.; Chapman, S.J.; SIAM Journal on Applied Mathematics (May 2021) https://doi.org/10.1137/20M1336898 
  76. Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management; Lander, L.; Kallitsis, E.; Hales, A.; Edge, J.S.; Korre, A.; Offer, G.; Applied Energy (May 2021) https://doi.org/10.1016/j.apenergy.2021.116737 
  77. Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach; Couto, L.D.; Reniers, J.M.; Howey, D.A.; Kinnaert, M.; Proceedings of the American Control Conference (May 2021) https://doi.org/10.23919/ACC50511.2021.9482918 
  78. Battery Degradation-Aware Current Derating: An Effective Method to Prolong Lifetime and Ease Thermal Management; Schimpe, M.; Barreras, J.V.; Wu, B.; Offer, G.J.; Journal of the Electrochemical Society (June 2021) https://doi.org/10.1149/1945-7111/ac0553 
  79. Dandeliion v1: An extremely fast solver for the newman model of lithium-ion battery (dis)charge; Korotkin, I.; Sahu, S.; O’kane, S.E.J.; Richardson, G.; Foster, J.M.; Journal of the Electrochemical Society (June 2021) https://doi.org/10.1149/1945-7111/ac085f 
  80. Physical Modelling of the Slow Voltage Relaxation Phenomenon in Lithium-Ion Batteries; Kirk, T.L.; Please, C.P.; Jon Chapman, S.; Journal of the Electrochemical Society (June 2021) https://doi.org/10.1149/1945-7111/ac0bf7 
  81. Financial viability of electric vehicle lithium-ion battery recycling; Lander, L.; Cleaver, T.; Rajaeifar, M.A.; Nguyen-Tien, V.; Elliott, R.J.R.; Heidrich, O.; Kendrick, E.; Edge, J.S.; Offer, G.; iScience (June 2021) https://doi.org/10.1016/j.isci.2021.102787 (See also ReLIB) 
  82. A consensus algorithm for multi-objective battery balancing; Barreras, J.V.; de Castro, R.; Wan, Y.; Dragicevic, T.; Energies (July 2021) https://doi.org/10.3390/en14144279 
  83. Electrochemistry from first-principles in the grand canonical ensemble; Bhandari, A.; Peng, C.; Dziedzic, J.; Anton, L.; Owen, J.R.; Kramer, D.; Skylaris, C.-K.; Journal of Chemical Physics (July 2021) https://doi.org/10.1063/5.0056514 
  84. The challenge and opportunity of battery lifetime prediction from field data; Sulzer, V.; Mohtat, P.; Aitio, A.; Lee, S.; Yeh, Y.T.; Steinbacher, F.; Khan, M.U.; Lee, J.W.; Siegel, J.B.; Stefanopoulou, A.G.; Howey, D.A.; Joule (July 2021) https://doi.org/10.1016/j.joule.2021.06.005 
  85. Mechanism of Li nucleation at graphite anodes and mitigation strategies; Peng, C.; Bhandari, A.; Dziedzic, J.; Owen, J.R.; Skylaris, C.-K.; Kramer, D.; Journal of Materials Chemistry A (July 2021) https://doi.org/10.1039/d1ta03447b 
  86. Highly Aligned Ultra-Thick Gel-Based Cathodes Unlocking Ultra-High Energy Density Batteries; Yang, S.; Zhou, C.; Wang, Q.; Chen, B.; Zhao, Y.; Guo, B.; Zhang, Z.; Gao, X.; Chowdhury, R.; Wang, H.; Lai, C.; Brandon, N.P.; Wu, B.; Liu, X.; Energy and Environmental Materials (Aug 2021) https://doi.org/10.1002/eem2.12252 
  87. Systematic derivation and validation of a reduced thermal-electrochemical model for lithium-ion batteries using asymptotic methods; Brosa Planella, F.; Sheikh, M.; Widanage, W.D.; Electrochimica Acta (Aug 2021) https://doi.org/10.1016/j.electacta.2021.138524 
  88. Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach; Wang, A.A.; Gunnarsdóttir, A.B.; Fawdon, J.; Pasta, M.; Grey, C.P.; Monroe, C.W.; ACS Energy Letters (Aug 2021) https://doi.org/10.1021/acsenergylett.1c01213 
  89. Implementation for a cloud battery management system based on the CHAIN framework; Yang, S.; Zhang, Z.; Cao, R.; Wang, M.; Cheng, H.; Zhang, L.; Jiang, Y.; Li, Y.; Chen, B.; Ling, H.; Lian, Y.; Wu, B.; Liu, X.; Energy and AI (Sept 2021) https://doi.org/10.1016/j.egyai.2021.100088 
  90. One-shot battery degradation trajectory prediction with deep learning; Li, W.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U.; Journal of Power Sources (Sept 2021) https://doi.org/10.1016/j.jpowsour.2021.230024 
  91. Overscreening and Underscreening in Solid-Electrolyte Grain Boundary Space-Charge Layers; Dean, J.M.; Coles, S.W.; Saunders, W.R.; McCluskey, A.R.; Wolf, M.J.; Walker, A.B.; Morgan, B.J.; Physical Review Letters (Sept 2021) https://doi.org/10.1103/PhysRevLett.127.135502 
  92. Charge transport modelling of Lithium-ion batteries; Richardson, G.W.; Foster, J.M.; Ranom, R.; Please, C.P.; Ramos, A.M.; European Journal of Applied Mathematics (Oct 2021) https://doi.org/10.1017/S0956792521000292 
  93. Heat generation and a conservation law for chemical energy in Li-ion batteries; Richardson, G.; Korotkin, I.; Electrochimica Acta (Oct 2021) https://doi.org/10.1016/j.electacta.2021.138909 
  94. Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries; Pang, M.-C.; Yang, K.; Brugge, R.; Zhang, T.; Liu, X.; Pan, F.; Yang, S.; Aguadero, A.; Wu, B.; Marinescu, M.; Wang, H.; Offer, G.J.; Materials Today (Oct 2021) https://doi.org/10.1016/j.mattod.2021.02.011 
  95. Understanding fast-ion conduction in solid electrolytes; Morgan, B.J.; Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Nov 2021) https://doi.org/10.1098/rsta.2019.0451 (See also CATMAT) 
  96. On uncertainty quantification in the parametrization of newman-type models of lithium-ion batteries; Escalante, J.M.; Sahu, S.; Foster, J.M.; Protas, B.; Journal of the Electrochemical Society (Nov 2021) https://doi.org/10.1149/1945-7111/ac3159 
  97. Lithium-ion battery cathode and anode potential observer based on reduced-order electrochemical single particle model; Li, L.; Ren, Y.; O’Regan, K.; Koleti, U.R.; Kendrick, E.; Widanage, W.D.; Marco, J.; Journal of Energy Storage (Dec 2021) https://doi.org/10.1016/j.est.2021.103324 
  98. Parametrisation and Use of a Predictive DFN Model for a High-Energy NCA/Gr-SiOx Battery; Zülke, A.; Korotkin, I.; Foster, J.M.; Nagarathinam, M.; Hoster, H.; Richardson, G.; Journal of the Electrochemical Society (Dec 2021) https://doi.org/10.1149/1945-7111/ac3e4a 
  99. Predicting battery end of life from solar off-grid system field data using machine learning; Aitio, A.; Howey, D.A.; Joule (Dec 2021) https://doi.org/10.1016/j.joule.2021.11.006 
  100. From Atoms to Cells: Multiscale Modeling of LiNixMnyCozO2Cathodes for Li-Ion Batteries; Morgan, L.M.; Islam, M.M.; Yang, H.; O’Regan, K.; Patel, A.N.; Ghosh, A.; Kendrick, E.; Marinescu, M.; Offer, G.J.; Morgan, B.J.; Islam, M.S.; Edge, J.; Walsh, A.; ACS Energy Letters (Dec 2021) https://doi.org/10.1021/acsenergylett.1c02028 
  101. Sodiation Of Hard Carbon: How Separating Enthalpy And Entropy Contributions Can Find Transitions Hidden In The Voltage Profile; Mercer, M.P.; Affleck, S.; Gavilán-Arriazu, E.M.; Zülke, A.A.; Maughan, P.A.; Trivedi, S.; Fichtner, M.; Reddy Munnangi, A.; Leiva, E.P.M.; Hoster, H.E.; ChemPhysChem (Dec 2021) https://doi.org/10.1002/cphc.202100748 
  102. Peak-tracking method to quantify degradation modes in lithium-ion batteries via differential voltage and incremental capacity; Chen, J.; Marlow, M.N.; Jiang, Q.; Wu, B.; Journal of Energy Storage (Jan 2022) https://doi.org/10.1016/j.est.2021.103669 
  103. Lithium-ion batteries under pulsed current operation to stabilize future grids; Qin, Y.; Chen, X.; Tomaszewska, A.; Chen, H.; Wei, Y.; Zhu, H.; Li, Y.; Cui, Z.; Huang, J.; Du, J.; Han, X.; Lu, L.; Wu, B.; Sun, K.; Zhang, Q.; Ouyang, M.; Cell Reports Physical Science (Jan 2022) https://doi.org/10.1016/j.xcrp.2021.100708 
  104. Consolidated theory of fluid thermodiffusion; Van-Brunt, A.; Farrell, P.E.; Monroe, C.W.; AIChE Journal (Jan 2022) https://doi.org/10.1002/aic.17599 
  105. Meta-analysis of experimental results for heat capacity and thermal conductivity in lithium-ion batteries: A critical review; Steinhardt, M.; Barreras, J.V.; Ruan, H.; Wu, B.; Offer, G.J.; Jossen, A.; Journal of Power Sources (Feb 2022) https://doi.org/10.1016/j.jpowsour.2021.230829 
  106. Anisotropic Thermal Characterisation of Large-Format Lithium-Ion Pouch Cells**; Lin, J.; Chu, H.N.; Monroe, C.W.; Howey, D.A.; Batteries and Supercaps (Feb 2022) https://doi.org/10.1002/batt.202100401 
  107. liionpack: A Python package for simulating packs of batteries with PyBaMM; Tranter, T.G.; Timms, R.; Sulzer, V.; Brosa Planella, F.; Wiggins, G.M.; Karra, S.V.; Agarwal, P.; Chopra, S.; Allu, S.; Shearing, P.R.; Brett, D.J.L.; Journal of Open Source Software (Feb 2022) https://doi.org/10.21105/joss.04051 
  108. Measuring Irreversible Heat Generation in Lithium-Ion Batteries: An Experimental Methodology; Diaz, L.B.; Hales, A.; Marzook, M.W.; Patel, Y.; Offer, G.; Journal of the Electrochemical Society (March 2022) https://doi.org/10.1149/1945-7111/ac5ada 
  109. Lithium-ion battery degradation: how to model it; O’Kane, S.E.J.; Ai, W.; Madabattula, G.; Alonso-Alvarez, D.; Timms, R.; Sulzer, V.; Edge, J.S.; Wu, B.; Offer, G.J.; Marinescu, M.; Physical Chemistry Chemical Physics (March 2022) https://doi.org/10.1039/d2cp00417h 
  110. Immersion cooling for lithium-ion batteries – A review; Roe, C.; Feng, X.; White, G.; Li, R.; Wang, H.; Rui, X.; Li, C.; Zhang, F.; Null, V.; Parkes, M.; Patel, Y.; Wang, Y.; Wang, H.; Ouyang, M.; Offer, G.; Wu, B.; Journal of Power Sources (March 2022) https://doi.org/10.1016/j.jpowsour.2022.231094 
  111. MODELING ELECTRODE HETEROGENEITY IN LITHIUM-ION BATTERIES: UNIMODAL AND BIMODAL PARTICLE-SIZE DISTRIBUTIONS; Kirk, T.L.; Evans, J.; Please, C.P.; Chapman, S.J.; SIAM Journal on Applied Mathematics (April 2022) https://doi.org/10.1137/20M1344305S 
  112. Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling; Boyce, A.M.; Martínez-Pañeda, E.; Wade, A.; Zhang, Y.S.; Bailey, J.J.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (April 2022) https://doi.org/10.1016/j.jpowsour.2022.231119 (See also Degradation, Nextrode, ReLIB) 
  113. Operando Ultrasonic Monitoring of Lithium-Ion Battery Temperature and Behaviour at Different Cycling Rates and under Drive Cycle Conditions; Owen, R.E.; Robinson, J.B.; Weaving, J.S.; Pham, M.T.M.; Tranter, T.G.; Neville, T.P.; Billson, D.; Braglia, M.; Stocker, R.; Tidblad, A.A.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (April 2022) https://doi.org/10.1149/1945-7111/ac6833 (See also Degradation, SafeBatt, LiSTAR, ReLIB) 
  114. A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes; Ai, W.; Kirkaldy, N.; Jiang, Y.; Offer, G.; Wang, H.; Wu, B.; Journal of Power Sources (April 2022) https://doi.org/10.1016/j.jpowsour.2022.231142 
  115. A greyscale erosion algorithm for tomography (GREAT) to rapidly detect battery particle defects; Wade, A.; Heenan, T.M.M.; Kok, M.; Tranter, T.; Leach, A.; Tan, C.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; npj Materials Degradation (May 2022) https://doi.org/10.1038/s41529-022-00255-z (See also Degradation) 
  116. qTSL: A Multilayer Control Framework for Managing Capacity, Temperature, Stress, and Losses in Hybrid Balancing Systems; De Castro, R.; Pereira, H.; Araujo, R.E.; Barreras, J.V.; Pangborn, H.C.; IEEE Transactions on Control Systems Technology (May 2022) https://doi.org/10.1109/TCST.2021.3103483 
  117. Li nucleation on the graphite anode under potential control in Li-ion batteries; Bhandari, A.; Peng, C.; Dziedzic, J.; Owen, J.R.; Kramer, D.; Skylaris, C.-K.; Journal of Materials Chemistry A (May 2022) https://doi.org/10.1039/d2ta02420a 
  118. Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models; Wang, A.A.; O’Kane, S.E.J.; Brosa Planella, F.; Houx, J.L.; O’Regan, K.; Zyskin, M.; Edge, J.; Monroe, C.W.; Cooper, S.J.; Howey, D.A.; Kendrick, E.; Foster, J.M.; Progress in Energy (May 2022) https://doi.org/10.1088/2516-1083/ac692c 
  119. Multiscale coupling of surface temperature with solid diffusion in large lithium-ion pouch cells; Lin, J.; Chu, H.N.; Howey, D.A.; Monroe, C.W.; Communications Engineering (May 2022) https://doi.org/10.1038/s44172-022-00005-8 
  120. Modelling Solvent Consumption from SEI Layer Growth in Lithium-Ion Batteries; Li, R.; O’Kane, S.; Marinescu, M.; Offer, G.J.; Journal of the Electrochemical Society (June 2022) https://doi.org/10.1149/1945-7111/ac6f84 
  121. The Effects of Temperature and Cell Parameters on Lithium-Ion Battery Fast Charging Protocols: A Model-Driven Investigation; Tomaszewska, A.; Parkes, M.; Doel, R.; Offer, G.; Wu, B.; Journal of the Electrochemical Society (June 2022) https://doi.org/10.1149/1945-7111/ac79d3 
  122. Methods – Kintsugi Imaging of Battery Electrodes: Distinguishing Pores from the Carbon Binder Domain using PT Deposition; Cooper, S.J.; Roberts, S.A.; Liu, Z.; Winiarski, B.; Journal of the Electrochemical Society (July 2022) https://doi.org/10.1149/1945-7111/ac7a68 
  123. A continuum of physics-based lithium-ion battery models reviewed; Brosa Planella, F.; Ai, W.; Boyce, A.M.; Ghosh, A.; Korotkin, I.; Sahu, S.; Sulzer, V.; Timms, R.; Tranter, T.G.; Zyskin, M.; Cooper, S.J.; Edge, J.S.; Foster, J.M.; Marinescu, M.; Wu, B.; Richardson, G.; Progress in Energy (July 2022) https://doi.org/10.1088/2516-1083/ac7d31 (See also Nextrode) 
  124. Kintsugi Imaging of Battery Electrodes: Distinguishing Pores from the Carbon Binder Domain using PT Deposition; Cooper, S. J.; Roberts, S. A.; Liu, Z.; & Winiarski, B.; Journal of the Electrochemical Society (July 2022) https://iopscience.iop.org/article/10.1149/1945-7111/ac7a68/meta 
  125. Generalised diagnostic framework for rapid battery degradation quantification with deep learning; Ruan, H.; Chen, J.; Ai, W.; Wu, B.; Energy and AI (Aug 2022) https://doi.org/10.1016/j.egyai.2022.100158 
  126. Identifiability of Lithium-Ion Battery Electrolyte Dynamics; Couto, L.D.; Drummond, R.; Zhang, D.; Kirk, T.; Howey, D.A.; Proceedings of the American Control Conference (Sept 2022) https://doi.org/10.23919/ACC53348.2022.9867154 
  127. Thermal-electrochemical parameters of a high energy lithium-ion cylindrical battery; O’Regan, K.; Brosa Planella, F.; Widanage, W.D.; Kendrick, E.; Electrochimica Acta (Sept 2022) https://doi.org/10.1016/j.electacta.2022.140700 
  128. Current-driven solvent segregation in lithium-ion electrolytes; Wang, A.A.; Greenbank, S.; Li, G.; Howey, D.A.; Monroe, C.W.; Cell Reports Physical Science (Sept 2022) https://doi.org/10.1016/j.xcrp.2022.101047 
  129. Exploring the influence of porosity and thickness on lithium-ion battery electrodes using an image-based model; Boyce, A.M.; Lu, X.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Sept 2022) https://doi.org/10.1016/j.jpowsour.2022.231779 (See also Nextrode) 
  130. Ab initio study of lithium intercalation into a graphite nanoparticle; Holland, J.; Bhandari, A.; Kramer, D.; Milman, V.; Hanke, F.; Skylaris, C.-K.; Materials Advances (Sept 2022) https://doi.org/10.1039/D2MA00857B 
  131. A coupled phase field formulation for modelling fatigue cracking in lithium-ion battery electrode particles; Ai, W.; Wu, B.; Martínez-Pañeda, E.; Journal of Power Sources (Oct 2022) https://doi.org/10.1016/j.jpowsour.2022.231805 
  132. Thermal evaluation of lithium-ion batteries: Defining the cylindrical cell cooling coefficient; Marzook, M.W.; Hales, A.; Patel, Y.; Offer, G.; Marinescu, M.; Journal of Energy Storage (Oct 2022) https://doi.org/10.1016/j.est.2022.105217 
  133. Entropy Profiling for the Diagnosis of NCA/Gr-SiOx Li-Ion Battery Health; Wojtala, M.E.; Zülke, A.A.; Burrell, R.; Nagarathinam, M.; Li, G.; Hoster, H.E.; Howey, D.A.; Mercer, M.P.; Journal of the Electrochemical Society (Oct 2022) https://doi.org/10.1149/1945-7111/ac87d1 
  134. Current Distribution and Anode Potential Modelling in Battery Modules with a Real-World Busbar System; Ren, Y.; Liu, K.; Grandjean, T.; Widanage, W.D.; Marco, J.; IEEE Transactions on Transportation Electrification (Oct 2022) https://doi.org/10.1109/TTE.2022.3212313 
  135. Towards Optimised Cell Design of Thin Film Silicon-Based Solid-State Batteries via Modelling and Experimental Characterisation; Vadhva, P.; Boyce, A.M.; Hales, A.; Pang, M.-C.; Patel, A.N.; Shearing, P.R.; Offer, G.; Rettie, A.J.E.; Journal of the Electrochemical Society (Oct 2022) https://doi.org/10.1149/1945-7111/ac9552 
  136. Principles of the Battery Data Genome; Ward, L.; Babinec, S.; Dufek, E.J.; Howey, D.A.; Viswanathan, V.; Aykol, M.; Beck, D.A.C.; Blaiszik, B.; Chen, B.-R.; Crabtree, G.; Clark, S.; De Angelis, V.; Dechent, P.; Dubarry, M.; Eggleton, E.E.; Finegan, D.P.; Foster, I.; Gopal, C.B.; Herring, P.K.; Hu, V.W.; Paulson, N.H.; Preger, Y.; Uwe-Sauer, D.; Smith, K.; Snyder, S.W.; Sripad, S.; Tanim, T.R.; Teo, L.; Joule (Oct 2022) https://doi.org/10.1016/j.joule.2022.08.008 
  137. MicroLib: A library of 3D microstructures generated from 2D micrographs using SliceGAN; Kench, S.; Squires, I.; Dahari, A.; Cooper, S.J.; Scientific Data (Oct 2022) https://doi.org/10.1038/s41597-022-01744-1 
  138. Thermal Management Optimization for Large-Format Lithium-Ion Battery Using Cell Cooling Coefficient; Xie, Y.; Hales, A.; Li, R.; Feng, X.; Patel, Y.; Offer, G.; Journal of the Electrochemical Society (Nov 2022) https://doi.org/10.1149/1945-7111/ac9d08 
  139. Lithium-Ion Battery Degradation: Measuring Rapid Loss of Active Silicon in Silicon-Graphite Composite Electrodes; Kirkaldy, N.; Samieian, M.A.; Offer, G.J.; Marinescu, M.; Patel, Y.; ACS Applied Energy Materials (Nov 2022) https://doi.org/10.1021/acsaem.2c02047 
  140. Fusion of Complementary 2D and 3D Mesostructural Datasets Using Generative Adversarial Networks; Dahari, A.; Kench, S.; Squires, I.; Cooper, S.J.; Advanced Energy Materials (Nov 2022) https://doi.org/10.1002/aenm.202202407 
  141. Higher corrections of the Ilkovich equation; Chapman, S.J.; Monroe, C.W.; Reddy, S.K.M.; Van-Brunt, A.; White, R.E.; Journal of Electroanalytical Chemistry (Nov 2022) https://doi.org/10.1016/j.jelechem.2022.116899 
  142. Machine-Learning-Driven Advanced Characterization of Battery Electrodes; Finegan, D.P.; Squires, I.; Dahari, A.; Kench, S.; Jungjohann, K.L.; Cooper, S.J.; ACS Energy Letters (Dec 2022) https://doi.org/10.1021/acsenergylett.2c01996 
  143. Revealing the rate-limiting electrode of lithium batteries at high rates and mass loadings; Chen, Y.; Key, J.; O’Regan, K.; Song, T.; Han, Y.; Kendrick, E.; Chemical Engineering Journal (Dec 2022) https://doi.org/10.1016/j.cej.2022.138275 
  144. A user-friendly lithium battery simulator based on open-source CFD; Jiang, Y.; Zhang, L.; Offer, G.; Wang, H.; Digital Chemical Engineering (Dec 2022) https://doi.org/10.1016/j.dche.2022.100055 
  145. Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs; Lander, L.; Tagnon, C.; Nguyen-Tien, V.; Kendrick, E.; Elliott, R.J.R.; Abbott, A.P.; Edge, J.S.; Offer, G.J.; Applied Energy (Feb 2023) https://doi.org/10.1016/j.apenergy.2022.120437 (See also ReLIB) 
  146. Structural electroneutrality in Onsager–Stefan–Maxwell transport with charged species; Van-Brunt, A.; Farrell, P.E.; Monroe, C.W.; Electrochimica Acta (Feb 2023) https://doi.org/10.1016/j.electacta.2022.141769 
  147. Sodiation energetics in pore size controlled hard carbons determined via entropy profiling; Mercer, M.P.; Nagarathinam, M.; Gavilán-Arriazu, E.M.; Binjrajka, A.; Panda, S.; Au, H.; Crespo-Ribadeneyra, M.; Titirici, M.-M.; Leiva, E.P.M.; Hoster, H.E.; Journal of Materials Chemistry A (Feb 2023) https://doi.org/10.1039/D2TA09406A (See also LiSTAR) 
  148. Artefact removal from micrographs with deep learning based inpainting†; Squires, I.; Dahari, A.; Cooper, S.J.; Kench, S.; Digital Discovery (Feb 2023) https://doi.org/10.1039/D2DD00120A 
  149. Roadmap for a sustainable circular economy in lithium-ion and future battery technologies; Harper, G.D.J.; Kendrick, E.; Anderson, P.A.; Mrozik, W.; Christensen, P.; Lambert, S.; Greenwood, D.; Das, P.K.; Ahmeid, M.; Milojevic, Z.; Du, W.; Brett, D.J.L.; Shearing, P.R.; Rastegarpanah, A.; Stolkin, R.; Sommerville, R.; Zorin, A.; Durham, J.L.; Abbott, A.P.; Thompson, D.; Browning, N.D.; Mehdi, B.L.; Bahri, M.; Schanider-Tontini, F.; Nicholls, D.; Stallmeister, C.; Friedrich, B.; Sommerfeld, M.; Driscoll, L.L.; Jarvis, A.; Giles, E.C.; Slater, P.R.; Echavarri-Bravo, V.; Maddalena, G.; Horsfall, L.E.; Gaines, L.; Dai, Q.; Jethwa, S.J.; Lipson, A.L.; Leeke, G.A.; Cowell, T.; Farthing, J.G.; Mariani, G.; Smith, A.; Iqbal, Z.; Golmohammadzadeh, R.; Sweeney, L.; Goodship, V.; Li, Z.; Edge, J.; Lander, L.; Nguyen, V.T.; Elliot, R.J.R.; Heidrich, O.; Slattery, M.; Reed, D.; Ahuja, J.; Cavoski, A.; Lee, R.; Driscoll, E.; Baker, J.; Littlewood, P.; Styles, I.; Mahanty, S.; Boons, F.; JPhys Energy (Feb 2023) https://doi.org/10.1088/2515-7655/acaa57 (See also ReLIB) 
  150. Quantitative assessment of machine-learning segmentation of battery electrode materials for active material quantification; Bailey, J.J.; Wade, A.; Boyce, A.M.; Zhang, Y.S.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Feb 2023) https://doi.org/10.1016/j.jpowsour.2022.232503 (See also Nextrode) 
  151. A continuum model for lithium plating and dendrite formation in lithium-ion batteries: Formulation and validation against experiment; Sahu, S.; Foster, J.M.; Journal of Energy Storage (April 2023) https://doi.org/10.1016/j.est.2022.106516 
  152. Lithium-ion battery lifetime extension: A review of derating methods; Ruan, H.; Barreras, J.V.; Engstrom, T.; Merla, Y.; Millar, R.; Wu, B.; Journal of Power Sources (April 2023) https://doi.org/10.1016/j.jpowsour.2023.232805 
  153. 2023 roadmap for potassium-ion batteries; Xu, Y.; Titirici, M.; Chen, J.; Cora, F.; Cullen, P.L.; Edge, J.S.; Fan, K.; Fan, L.; Feng, J.; Hosaka, T.; Hu, J.; Huang, W.; Hyde, T.I.; Imtiaz, S.; Kang, F.; Kennedy, T.; Kim, E.J.; Komaba, S.; Lander, L.; Le Pham, P.N.; Liu, P.; Lu, B.; Meng, F.; Mitlin, D.; Monconduit, L.; Palgrave, R.G.; Qin, L.; Ryan, K.M.; Sankar, G.; Scanlon, D.O.; Shi, T.; Stievano, L.; Tinker, H.R.; Wang, C.; Wang, H.; Wang, H.; Wu, Y.; Zhai, D.; Zhang, Q.; Zhou, M.; Zou, J.; JPhys Energy (April 2023) https://doi.org/10.1088/2515-7655/acbf76  
  154. Enabling battery digital twins at the industrial scale; Dubarry, M.; Howey, D.; Wu, B.; Joule (May 2023) https://doi.org/10.1016/j.joule.2023.05.005  
  155. Learning Optimal Forms of Constitutive Relations Characterizing Ion Intercalation from Data in Mathematical Models of Lithium-Ion Batteries; Daniels, L.; Sahu, S.; Sanders, K.J.; Goward, G.R.; Foster, J.M.; Protas, B.; Journal of Physical Chemistry C (Aug 2023) https://doi.org/10.1021/acs.jpcc.3c02915  
  156. The heating triangle: A quantitative review of self-heating methods for lithium-ion batteries at low temperatures; Ruan, H.; Barreras, J.V.; Steinhardt, M.; Jossen, A.; Offer, G.J.; Wu, B.; Journal of Power Sources (Aug 2023) https://doi.org/10.1016/j.jpowsour.2023.233484  
  157. Coupled electrochemical-thermal-mechanical stress modelling in composite silicon/graphite lithium-ion battery electrodes; Bonkile, M.P.; Jiang, Y.; Kirkaldy, N.; Sulzer, V.; Timms, R.; Wang, H.; Offer, G.; Wu, B.; Journal of Energy Storage (Sept 2023) https://doi.org/10.1016/j.est.2023.108609 
  158. Direct observations of electrochemically induced intergranular cracking in polycrystalline NMC811 particles; Parks, H.C.W.; Boyce, A.M.; Wade, A.; Heenan, T.M.M.; Tan, C.; Martínez-Pañeda, E.; Shearing, P.R.; Brett, D.J.L.; Jervis, R.; Journal of Materials Chemistry A (Sept 2023) https://doi.org/10.1039/D3TA03057A (See also Degradation, Nextrode) 
  159. Effect of thermal gradients on inhomogeneous degradation in lithium-ion batteries; Li, S.; Zhang, C.; Zhao, Y.; Offer, G. J.; Marinescu, M.; Communications Engineering  (Oct 2023) https://doi.org/10.1038/s44172-023-00124-w  
  160. How to enable large format 4680 cylindrical lithium-ion batteries; Li, S.; Marzook, M.W.; Zhang, C.; Offer, G.J.; Marinescu, M.; Applied Energy (Nov 2023) https://doi.org/10.1016/j.apenergy.2023.121548  
  161. A Workflow for Identifying Viable Crystal Structures with Partially Occupied Sites Applied to the Solid Electrolyte Cubic Li7La3Zr2O12; Holland, J.; Demeyere, T.; Bhandari, A.; Hanke, F.; Milman, V.; Skylaris, C-K.; J. Phys. Chem. Lett. (Nov 2023) https://doi.org/10.1021/acs.jpclett.3c02064