A full list of publications to from the Sodium-ion Batteries (NEXGENNA) project to October 2023 can be found here.   

  1. Oxygen Redox Activity through a Reductive Coupling Mechanism in the P3-Type Nickel-Doped Sodium Manganese Oxide; Kim, E.J.; Ma, L.A.; Duda, L.C.; Pickup, D.M.; Chadwick, A.V.; Younesi, R.; Irvine, J.T.S.; Robert Armstrong, A.; ACS Applied Energy Materials (Dec 2019) https://doi.org/10.1021/acsaem.9b02171  
  2. Advances in Organic Anode Materials for Na-/K-Ion Rechargeable Batteries; Desai, A.V.; Morris, R.E.; Armstrong, A.R.; ChemSusChem (July 2020) https://doi.org/10.1002/cssc.202001334  
  3. Surface Engineering Strategy Using Urea To Improve the Rate Performance of Na2Ti3O7 in Na-Ion Batteries; Costa, S.I.R.; Choi, Y.-S.; Fielding, A.J.; Naylor, A.J.; Griffin, J.M.; Sofer, Z.; Scanlon, D.O.; Tapia-Ruiz, N.; Chemistry – A European Journal (Aug 2020) https://doi.org/10.1002/chem.202003129  
  4. Vacancy-enhanced oxygen redox reversibility in P3-type magnesium-doped sodium manganese oxide Na0.67Mg0.2Mn0.8O2; Kim, E.J.; Ma, L.A.; Pickup, D.M.; Chadwick, A.V.; Younesi, R.; Maughan, P.; Irvine, J.T.S.; Armstrong, A.R.; ACS Applied Energy Materials (Sept 2020) https://doi.org/10.1021/acsaem.0c01352  
  5. Complementary sample preparation strategies (PVD/BEXP) combining with multifunctional SPM for the characterizations of battery interfacial properties; Pan, H.; Chen, Y.; Pang, W.; Sun, H.; Li, J.; Lin, Y.; Kolosov, O.; Huang, Z.; MethodsX (Nov 2020) https://doi.org/10.1016/j.mex.2021.101250  
  6. Extending the Performance Limit of Anodes: Insights from Diffusion Kinetics of Alloying Anodes; Choi, Y.-S.; Scanlon, D.O.; Lee, J.-C.; Advanced Energy Materials (Dec 2020) https://doi.org/10.1002/aenm.202003078  
  7. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies; Kim, E.J.; Mofredj, K.; Pickup, D.M.; Chadwick, A.V.; Irvine, J.T.S.; Armstrong, A.R.; Journal of Power Sources (Jan 2021) https://doi.org/10.1016/j.jpowsour.2020.229010  
  8. Na2Fe(C2O4)(HPO4): A promising new oxalate-phosphate based mixed polyanionic cathode for Li/Na ion batteries; Pramanik, A.; Bradford, A.J.; Lee, S.L.; Lightfoot, P.; Armstrong, A.R.; JPhys Materials (Feb 2021) https://doi.org/10.1088/2515-7639/abe5f9  
  9. Surface or bulk? Real-time manganese dissolution detection in a lithium-ion cathode; Nikman, S.; Zhao, D.; Gonzalez-Perez, V.; Hoster, H.H.; Mertens, S.F.L.; Electrochimica Acta (April 2021) https://doi.org/10.1016/j.electacta.2021.138373  
  10. Sodium-Ion Batteries: Current Understanding of the Sodium Storage Mechanism in Hard Carbons Optimising properties to speed commercialisation; Fitzpatrick, J.R.; Costa, S.I.R.; Tapia-Rui, N.; Johnson Matthey Technology Review (June 2021) https://doi.org/10.1595/205651322X16250408525547  
  11. 2021 roadmap for sodium-ion batteries; Tapia-Ruiz, N.; Armstrong, A.R.; Alptekin, H.; Amores, M.A.; Au, H.; Barker, J.; Boston, R.; Brant, W.R.; Brittain, J.M.; Chen, Y.; Chhowalla, M.; Choi, Y.-S.; Costa, S.I.R.; Ribadeneyra, M.C.; Cussen, S.A.; Cussen, E.J.; David, W.I.F.; Desai, A.V.; Dickson, S.A.M.; Eweka, E.I.; Forero-Saboya, J.D.; Grey, C.P.; Griffin, J.M.; Gross, P.; Hua, X.; Irvine, J.T.S.; Johansson, P.; Jones, M.O.; Karlsmo, M.; Kendrick, E.; Kim, E.; Kolosov, O.V.; Li, Z.; Mertens, S.F.L.; Mogensen, R.; Monconduit, L.; Morris, R.E.; Naylor, A.J.; Nikman, S.; O’Keefe, C.A.; Ould, D.M.C.; Palgrave, R.G.; Poizot, P.; Ponrouch, A.; Renault, S.; Reynolds, E.M.; Rudola, A.; Sayers, R.; Scanlon, D.O.; Sen, S.; Seymour, V.R.; Silván, B.; Sougrati, M.T.; Stievano, L.; Stone, G.S.; Thomas, C.I.; Titirici, M.-M.; Tong, J.; Wood, T.J.; Wright, D.S.; Younesi, R.; JPhys Energy (July 2021) https://doi.org/10.1088/2515-7655/ac01ef (See also SOLBAT)  
  12. Correlating Local Structure and Sodium Storage in Hard Carbon Anodes: Insights from Pair Distribution Function Analysis and Solid-State NMR; Stratford, J.M.; Kleppe, A.K.; Keeble, D.S.; Chater, P.A.; Meysami, S.S.; Wright, C.J.; Barker, J.; Titirici, M.-M.; Allan, P.K.; Grey, C.P.; Journal of the American Chemical Society (Aug 2021) https://doi.org/10.1021/jacs.1c06058  
  13. Controlling Interfacial Reduction Kinetics and Suppressing Electrochemical Oscillations in Li4Ti5O12 Thin-Film Anodes; Chen, Y.; Pan, H.; Lin, C.; Li, J.; Cai, R.; Haigh, S.J.; Zhao, G.; Zhang, J.; Lin, Y.; Kolosov, O.V.; Huang, Z.; Advanced Functional Materials (Aug 2021) https://doi.org/10.1002/adfm.202105354  
  14. P2–Na2/3Mg1/4Mn7/12Co1/6O2 cathode material based on oxygen redox activity with improved first-cycle voltage hysteresis; Tapia-Ruiz, N.; Soares, C.; Somerville, J.W.; House, R.A.; Billaud, J.; Roberts, M.R.; Bruce, P.G.; Journal of Power Sources (Sept 2021) https://doi.org/10.1016/j.jpowsour.2021.230104  
  15. Ion dynamics in fluoride-containing polyatomic anion cathodes by muon spectroscopy; Johnston, B.I.J.; Baker, P.J.; Cussen, S.A.; JPhys Materials (Sept 2021) https://doi.org/10.1088/2515-7639/ac22ba (See also FutureCat) 
  16. New Route to Battery Grade NaPF6 for Na-Ion Batteries: Expanding the Accessible Concentration; Ould, D.M.C.; Menkin, S.; O’Keefe, C.A.; Coowar, F.; Barker, J.; Grey, C.P.; Wright, D.S.; Angewandte Chemie – International Edition (Sept 2021) https://doi.org/10.1002/anie.202111215  
  17. Solvothermal synthesis of a novel calcium metal-organic framework: High temperature and electrochemical behaviour; Main, R.M.; Cordes, D.B.; Desai, A.V.; Slawin, A.M.Z.; Wheatley, P.; Armstrong, A.R.; Morris, R.E.; Molecules (Nov 2021) https://doi.org/10.3390/molecules26227048  
  18. Exploring solid-electrolyte-interphase in rechargeable batteries: New methodology for nanoscale studies via ‘3D nanorheology microscopy’; Chen, Y.; Kolosov, O.V.; Imaging & Microscopy (Nov 2021) https://analyticalscience.wiley.com/do/10.1002/was.0004000211/full/  
  19. Mechanochemical synthesis of sodium carboxylates as anode materials in sodium ion batteries; Rainer, D.N.; Desai, A.V.; Armstrong, A.R.; Morris, R.E.; Journal of Materials Chemistry A (Nov 2021) https://doi.org/10.1039/d1ta07897f  
  20. Rapid Microwave-Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodium-Ion Batteries; Desai, A.V.; Rainer, D.N.; Pramanik, A.; Cabañero, J.M.; Morris, R.E.; Armstrong, A.R.; Small Methods (Dec 2021) https://doi.org/10.1002/smtd.202101016  
  21. Na2.4Al0.4Mn2.6O7 anionic redox cathode material for sodium-ion batteries – a combined experimental and theoretical approach to elucidate its charge storage mechanism; Soares, C.; Silván, B.; Choi, Y.-S.; Celorrio, V.; Seymour, V.R.; Cibin, G.; Griffin, J.M.; Scanlon, D.O.; Tapia-Ruiz, N.; Journal of Materials Chemistry A (Dec 2021) https://doi.org/10.1039/d1ta05137g  
  22. Importance of Superstructure in Stabilizing Oxygen Redox in P3-Na0.67Li0.2Mn0.8O2; Kim, E.J.; Maughan, P.A.; Bassey, E.N.; Clément, R.J.; Ma, L.A.; Duda, L.C.; Sehrawat, D.; Younesi, R.; Sharma, N.; Grey, C.P.; Armstrong, A.R.; Advanced Energy Materials (Jan 2022) https://doi.org/10.1002/aenm.202102325  
  23. A structural investigation of organic battery anode materials by NMR crystallography; Whewell, T.; Seymour, V.R.; Griffiths, K.; Halcovitch, N.R.; Desai, A.V.; Morris, R.E.; Armstrong, A.R.; Griffin, J.M.; Magnetic Resonance in Chemistry (Jan 2022) https://doi.org/10.1002/mrc.5249  
  24. Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na4/7[□1/7Ti1/7Mn5/7]O2 in sodium-ion batteries; Linnell, S.F.; Kim, E.J.; Choi, Y.-S.; Hirsbrunner, M.; Imada, S.; Pramanik, A.; Cuesta, A.F.; Miller, D.N.; Fusco, E.; Bode, B.E.; Irvine, J.T.S.; Duda, L.C.; Scanlon, D.O.; Armstrong, A.R.; Journal of Materials Chemistry A (March 2022) https://doi.org/10.1039/d2ta01485h  
  25. Enhanced Cycling Stability in the Anion Redox Material P3-Type Zn-Substituted Sodium Manganese Oxide; Linnell, S.F.; Hirsbrunner, M.; Imada, S.; Cibin, G.; Naden, A.B.; Chadwick, A.V.; Irvine, J.T.S.; Duda, L.C.; Armstrong, A.R.; ChemElectroChem (April 2022) https://doi.org/10.1002/celc.202200240  
  26. Sodium Borates: Expanding the Electrolyte Selection for Sodium-Ion Batteries; Ould, D.M.C.; Menkin, S.; Smith, H.E.; Riesgo-Gonzalez, V.; Jónsson, E.; O’Keefe, C.A.; Coowar, F.; Barker, J.; Bond, A.D.; Grey, C.P.; Wright, D.S.; Angewandte Chemie – International Edition (April 2022) https://doi.org/10.1002/anie.202202133  
  27. Exploiting anion and cation redox chemistry in lithium-rich perovskite oxalate: a novel next-generation Li/Na-ion battery electrode; Pramanik, A.; Manche, A.G.; Clulow, R.; Lightfoot, P.; Armstrong, A.R.; Dalton Transactions (July 2022) https://doi.org/10.1039/d2dt01447e  
  28. Effect of Cu substitution on anion redox behaviour in P3-type sodium manganese oxides; Linnell, S.F.; Manche, A.G.; Liao, Y.; Hirsbrunner, M.; Imada, S.; Naden, A.B.; Irvine, J.T.S.; Duda, L.C.; Armstrong, A.R.; JPhys Energy (Sept 2022) https://doi.org/10.1088/2515-7655/ac95cc  
  29. Effect of Ti-Substitution on the Properties of P3 Structure Na2/3Mn0.8Li0.2O2 Showing a Ribbon Superlattice; Linnell, S.F.; Jeong Kim, E.; Anh Ma, L.; Naden, A.B.; Irvine, J.T.S.; Younesi, R.; Duda, L.C.; Armstrong, A.R.; ChemElectroChem (Sept 2022) https://doi.org/10.1002/celc.202200929  
  30. Editorial: Sodium-ion batteries: From materials discovery and understanding to cell development; Hasa, I.; Tapia-Ruiz, N.; Galceran, M.; Frontiers in Energy Research (Nov 2022) https://doi.org/10.3389/fenrg.2022.1076764  
  31. Azo-functionalised metal-organic framework for charge storage in sodium-ion batteries; Desai, A.V.; Seymour, V.R.; Ettlinger, R.; Pramanik, A.; Manche, A.G.; Rainer, D.N.; Wheatley, P.S.; Griffin, J.M.; Morris, R.E.; Armstrong, A.R.; Chemical Communications (Dec 2022) https://doi.org/10.1039/D2CC06154F  
  32. Intrinsic Defects and Their Role in the Phase Transition of Na-Ion Anode Na2Ti3O7; Choi, Y.-S.; Costa, S.I.R.; Tapia-Ruiz, N.; Scanlon, D.O.; ACS Applied Energy Materials (Dec 2022) https://doi.org/10.1021/acsaem.2c03466  
  33. Chapter 4 Sodium Layered Oxide Cathode Materials; Armstrong, A.R.;  Linnell, S.F.;  Maughan, P.A.;  Silvan, B.;  Tapia-Ruiz, N.; ; Wiley (Dec 2022) https://doi.org/10.1002/9783527825769.ch4  
  34. Influence of electrode processing and electrolyte composition on multiwall carbon nanotube negative electrodes for sodium ion batteries; Fuente Cuesta, A.; Dickson, S.A.M.; Naden, A.B.; Lonsdale, C.; Irvine, J.T.S.; JPhys Energy (Feb 2023) https://doi.org/10.1088/2515-7655/acb3fc  
  35. Manipulating O3/P2 phase ratio in bi-phasic sodium layered oxides via ionic radius control; Maughan, P.A.; Naden, A.B.; Irvine, J.T.S.; Armstrong, A.R.; Communications Materials (Feb 2023) https://doi.org/10.1038/s43246-023-00337-8  
  36. Materials synthesis for Na-ion batteries; Entwistle, J.; Zhang, L.; Zhang, H.; Tapia-Ruiz, N.; Comprehensive Inorganic Chemistry III, Third Edition (Feb 2023) https://doi.org/10.1016/B978-0-12-823144-9.00195-3  
  37. K2Fe(C2O4)2: An Oxalate Cathode for Li/Na-Ion Batteries Exhibiting a Combination of Multielectron Cation and Anion Redox; Pramanik, A.; Manche, A.G.; Sougrati, M.T.; Chadwick, A.V.; Lightfoot, P.; Armstrong, A.R.; Chemistry of Materials (March 2023) https://doi.org/10.1021/acs.chemmater.3c00063  
  38. Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy; Chen, Y.; Wu, W.; Gonzalez-Munoz, S.; Forcieri, L.; Wells, C.; Jarvis, S.P.; Wu, F.; Young, R.; Dey, A.; Isaacs, M.; Nagarathinam, M.; Palgrave, R.G.; Tapia-Ruiz, N.; Kolosov, O.V.; Nature Communications (March 2023) https://doi.org/10.1038/s41467-023-37033-7  
  39. Neutron and muon characterisation techniques for battery materials; Pérez, G.E.; Brittain, J.M.; McClelland, I.; Hull, S.; Jones, M.O.; Playford, H.Y.; Cussen, S.A.; Baker, P.J.; Reynolds, E.M.; Journal of Materials Chemistry A (March 2023) https://doi.org/10.1039/D2TA07235A (See also FutureCat) 
  40. High Energy Density Li/Ni/Co-Free O3/P2 Sodium Layered Oxide Intergrowth for Sodium-Ion Batteries; Maughan, P.A.; Naden, A.B.; Irvine, J.T.S.; Armstrong, A.R.; Batteries and Supercaps (May 2023) https://doi.org/10.1002/batt.202300089  
  41. An ionic liquid synthesis route for mixed-phase sodium titanate (Na2Ti3O7 and Na2Ti6O13) rods as an anode for sodium-ion batteries; Kumari, P.; Li, Y.; Boston, R.; Nanoscale (June 2023) https://doi.org/10.1039/D3NR00639E  
  42. KFe(C2O4)F: A Fluoro-oxalate Cathode Material for Li/Na-Ion Batteries; Pramanik, A.; Manche, A.G.; Smeaton, M.T.; Sougrati, M.-T.; Lightfoot, P.; Armstrong, A.R.; ChemElectroChem (June 2023) https://doi.org/10.1002/celc.202300192  
  43. Investigations into Improved Electrochemical Performance of Sn Doped Hard Carbons as Negatives for Sodium-Ion Batteries; Tripathi, A.; Murugesan, C.; Naden, A.; Curran, P.; Kavanagh, C.M.; Condliffe, J.M.; Armstrong, A.R.; Irvine, J.T.S.; Batteries and Supercaps (Aug 2023) https://doi.org/10.1002/batt.202300225  
  44. Green Synthesis of Reticular Materials; Desai, A.V.; Lizundia, E.; Laybourn, A.; Rainer, D.N.; Armstrong, A.R.; Morris, R.E.; Wuttke, S.; Ettlinger, R.; Advanced Functional Materials (Sept 2023) https://doi.org/10.1002/adfm.202304660  
  45. Sodium Tetrakis(hexafluoroisopropyloxy)aluminates: Synthesis and Electrochemical Characterisation of a Room-Temperature Solvated Ionic Liquid; Ould, D.M.C.; Menkin, S.; Smith, H.E.; Riesgo-González, V.; Smith, T.H.; Chinn, M.N.B.; Jónsson, E.; Bond, A.D.; Grey, C.P.; Wright, D.S.; ChemElectroChem (Sept 2023) https://doi.org/10.1002/celc.202300381