A full list of publications to from the Electrode Manufacturing (Nextrode) project to October 2023 can be found here.

  1. The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries; Driscoll, E.H.; Hayward, E.C.; Patchett, R.; Anderson, P.A.; Slater, P.R.; Journal of Chemical Education (June 2020) https://doi.org/10.1021/acs.jchemed.0c00282 (See also CATMAT, Degradation, ReLIB 
  2. Automotive Battery Equalizers Based on Joint Switched-Capacitor and Buck-Boost Converters; Liu, K.; Yang, Z.; Tang, X.; Cao, W.; IEEE Transactions on Vehicular Technology (Nov 2020) https://doi.org/10.1109/TVT.2020.3019347  
  3. 4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes; Ziesche, R.F.; Tremsin, A.S.; Huang, C.; Tan, C.; Grant, P.S.; Storm, M.; Brett, D.J.L.; Shearing, P.R.; Kockelmann, W.; Journal of Imaging (Dec 2020) https://doi.org/10.3390/jimaging6120136 (See also Characterisation) 
  4. Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates; Kazakli, M.; Mutch, G.A.; Triantafyllou, G.; Gil, A.G.; Li, T.; Wang, B.; Bailey, J.J.; Brett, D.J.L.; Shearing, P.R.; Li, K.; Metcalfe, I.; Journal of Membrane Science (Jan 2021) https://doi.org/10.1016/j.memsci.2020.118640  
  5. Multi-layered composite electrodes of high power Li4Ti5O12 and high capacity SnO2 for smart lithium ion storage; Lee, S.H.; Huang, C.; Grant, P.S.; Energy Storage Materials (June 2021) https://doi.org/10.1016/j.ensm.2021.02.010  
  6. Recent advances in acoustic diagnostics for electrochemical power systems; Majasan, J.O.; Robinson, J.B.; Owen, R.E.; Maier, M.; Radhakrishnan, A.N.P.; Pham, M.; Tranter, T.G.; Zhang, Y.; Shearing, P.R.; Brett, D.J.L.; JPhys Energy (June 2021) https://doi.org/10.1088/2515-7655/abfb4a (See also LiSTAR) 
  7. Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: A review; Zhang, Y.S.; Zhu, H.L.; Yao, D.; Williams, P.T.; Wu, C.; Xu, D.; Hu, Q.; Manos, G.; Yu, L.; Zhao, M.; Shearing, P.R.; Brett, D.J.L.; Sustainable Energy and Fuels (June 2021) https://doi.org/10.1039/d1se00619c  
  8. Microstructural design of printed graphite electrodes for lithium-ion batteries; Gastol, D.; Capener, M.; Reynolds, C.; Constable, C.; Kendrick, E.; Materials and Design (July 2021) https://doi.org/10.1016/j.matdes.2021.109720  
  9. In Situ Ultrasound Acoustic Measurement of the Lithium-Ion Battery Electrode Drying Process; Zhang, Y.S.; Pallipurath Radhakrishnan, A.N.; Robinson, J.B.; Owen, R.E.; Tranter, T.G.; Kendrick, E.; Shearing, P.R.; Brett, D.J.L.; ACS Applied Materials and Interfaces (July 2021) https://doi.org/10.1021/acsami.1c10472  
  10. Multi-length scale microstructural design of lithium-ion battery electrodes for improved discharge rate performance; Lu, X.; Zhang, X.; Tan, C.; Heenan, T.M.M.; Lagnoni, M.; O’Regan, K.; Daemi, S.; Bertei, A.; Jones, H.G.; Hinds, G.; Park, J.; Kendrick, E.; Brett, D.J.L.; Shearing, P.R.; Energy and Environmental Science (Sept 2021) https://doi.org/10.1039/d1ee01388b  
  11. A review of metrology in lithium-ion electrode coating processes; Reynolds, C.D.; Slater, P.R.; Hare, S.D.; Simmons, M.J.H.; Kendrick, E.; Materials and Design (Nov 2021) https://doi.org/10.1016/j.matdes.2021.109971  
  12. Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics; Niri, M.F.; Liu, K.; Apachitei, G.; Ramirez, L.R.; Lain, M.; Widanage, D.; Marco, J.; Journal of Cleaner Production (Nov 2021) https://doi.org/10.1016/j.jclepro.2021.129272  
  13. A Review of Lithium-Ion Battery Electrode Drying: Mechanisms and Metrology; Zhang, Y.S.; Courtier, N.E.; Zhang, Z.; Liu, K.; Bailey, J.J.; Boyce, A.M.; Richardson, G.; Shearing, P.R.; Kendrick, E.; Brett, D.J.L.; Advanced Energy Materials (Nov 2021) https://doi.org/10.1002/aenm.202102233  
  14. Feature Analyses and Modeling of Lithium-Ion Battery Manufacturing Based on Random Forest Classification; Liu, K.; Hu, X.; Zhou, H.; Tong, L.; Widanage, W.D.; Marco, J.; IEEE/ASME Transactions on Mechatronics (Dec 2021) https://doi.org/10.1109/TMECH.2020.3049046  
  15. Formulation and manufacturing optimization of lithium-ion graphite-based electrodes via machine learning; Drakopoulos, S.X.; Gholamipour-Shirazi, A.; MacDonald, P.; Parini, R.C.; Reynolds, C.D.; Burnett, D.L.; Pye, B.; O’Regan, K.B.; Wang, G.; Whitehead, T.M.; Conduit, G.J.; Cazacu, A.; Kendrick, E.; Cell Reports Physical Science (Dec 2021) https://doi.org/10.1016/j.xcrp.2021.100683  
  16. Design of Scalable, Next-Generation Thick Electrodes: Opportunities and Challenges; Boyce, A.M.; Cumming, D.J.; Huang, C.; Zankowski, S.P.; Grant, P.S.; Brett, D.J.L.; Shearing, P.R.; ACS Nano (Dec 2021) https://doi.org/10.1021/acsnano.1c09687  
  17. Understanding the effect of coating-drying operating variables on electrode physical and electrochemical properties of lithium-ion batteries; Román-Ramírez, L.A.; Apachitei, G.; Faraji-Niri, M.; Lain, M.; Widanage, W.D.; Marco, J.; Journal of Power Sources (Dec 2021) https://doi.org/10.1016/j.jpowsour.2021.230689  
  18. In situ x-ray computed tomography of zinc-air primary cells during discharge: Correlating discharge rate to anode morphology; Hack, J.; Patel, D.; Bailey, J.J.; Iacoviello, F.; Shearing, P.R.; Brett, D.J.L.; JPhys Materials (Dec 2021) https://doi.org/10.1088/2515-7639/ac3f9a  
  19. Effective Ultrasound Acoustic Measurement to Monitor the Lithium-Ion Battery Electrode Drying Process with Various Coating Thicknesses; Zhang, Y.S.; Robinson, J.B.; Owen, R.E.; Radhakrishnan, A.N.P.; Li, J.; Majasan, J.O.; Shearing, P.R.; Kendrick, E.; Brett, D.J.L.; ACS Applied Materials and Interfaces (Dec 2021) https://doi.org/10.1021/acsami.1c22150  
  20. Determining the electrochemical transport parameters of sodium-ions in hard carbon composite electrodes; Ledwoch, D.; Komsiyska, L.; Hammer, E.-M.; Smith, K.; Shearing, P.R.; Brett, D.J.L.; Kendrick, E.; Electrochimica Acta (Jan 2022) https://doi.org/10.1016/j.electacta.2021.139481  
  21. Modelling the Impedance Response of Graded LiFePO4Cathodes for Li-Ion Batteries; Drummond, R.; Cheng, C.; Grant, P.S.; Duncan, S.R.; Journal of the Electrochemical Society (Jan 2022) https://doi.org/10.1149/1945-7111/ac48c6  
  22. Quantifying key factors for optimised manufacturing of Li-ion battery anode and cathode via artificial intelligence; Niri, M.F.; Liu, K.; Apachitei, G.; Román-Ramírez, L.A.A.; Lain, M.; Widanage, D.; Marco, J.; Energy and AI (Jan 2022) https://doi.org/10.1016/j.egyai.2021.100129  
  23. Experimental data of cathodes manufactured in a convective dryer at the pilot-plant scale, and charge and discharge capacities of half-coin lithium-ion cells; Román-Ramírez, L.A.; Apachitei, G.; Faraji-Niri, M.; Lain, M.; Widanage, D.; Marco, J.; Data in Brief (Feb 2022) https://doi.org/10.1016/j.dib.2021.107720  
  24. 2022 roadmap on 3D printing for energy; Tarancón, A.; Esposito, V.; Torrell, M.; Di Vece, M.; Son, J.S.; Norby, P.; Barg, S.; Grant, P.S.; Vogelpoth, A.; Linnenbrink, S.; Brucki, M.; Schopphoven, T.; Gasser, A.; Persembe, E.; Koufou, D.; Kuhn, S.; Ameloot, R.; Hou, X.; Engelbrecht, K.; Bahl, C.R.H.; Pryds, N.; Wang, J.; Tsouris, C.; Miramontes, E.; Love, L.; Lai, C.; Sun, X.; Kærn, M.R.; Criscuolo, G.; Pedersen, D.B.; JPhys Energy (March 2022) https://doi.org/10.1088/2515-7655/ac483d  
  25. The effect of cell geometry and trigger method on the risks associated with thermal runaway of lithium-ion batteries; Walker, W.Q.; Cooper, K.; Hughes, P.; Doemling, I.; Akhnoukh, M.; Taylor, S.; Darst, J.; Billman, J.; Sharp, M.; Petrushenko, D.; Owen, R.; Pham, M.; Heenan, T.; Rack, A.; Magdsyuk, O.; Connolley, T.; Brett, D.; Shearing, P.; Finegan, D.; Darcy, E.; Journal of Power Sources (March 2022) https://doi.org/10.1016/j.jpowsour.2021.230645  
  26. Effect of coating operating parameters on electrode physical characteristics and final electrochemical performance of lithium-ion batteries; Román-Ramírez, L.A.; Apachitei, G.; Faraji-Niri, M.; Lain, M.; Widanage, D.; Marco, J.; International Journal of Energy and Environmental Engineering (March 2022) https://doi.org/10.1007/s40095-022-00481-w  
  27. Applications of advanced metrology for understanding the effects of drying temperature in the lithium-ion battery electrode manufacturing process; Zhang, Y.S.; Bailey, J.J.; Sun, Y.; Boyce, A.M.; Dawson, W.; Reynolds, C.D.; Zhang, Z.; Lu, X.; Grant, P.; Kendrick, E.; Shearing, P.R.; Brett, D.J.L.; Journal of Materials Chemistry A (April 2022) https://doi.org/10.1039/d2ta00861k  
  28. Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling; Boyce, A.M.; Martínez-Pañeda, E.; Wade, A.; Zhang, Y.S.; Bailey, J.J.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (April 2022) https://doi.org/10.1016/j.jpowsour.2022.231119 (See also MSM, Degradation, ReLIB 
  29. Low-voltage SEM of air-sensitive powders: From sample preparation to micro/nano analysis with secondary electron hyperspectral imaging; Nohl, J.F.; Farr, N.T.H.; Sun, Y.; Hughes, G.M.; Cussen, S.A.; Rodenburg, C.; Micron (May 2022) https://doi.org/10.1016/j.micron.2022.103234 (See also FutureCat) 
  30. Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography-the effect of calendering conditions; Ge, R.; Cumming, D.J.; Smith, R.M.; Powder Technology (May 2022) https://doi.org/10.1016/j.powtec.2022.117366  
  31. Performance Evaluation of Convolutional Auto Encoders for the Reconstruction of Li-Ion Battery Electrode Microstructure; Faraji Niri, M.; Mafeni Mase, J.; Marco, J.; Energies (June 2022) https://doi.org/10.3390/en15124489  
  32. A continuum of physics-based lithium-ion battery models reviewed; Brosa Planella, F.; Ai, W.; Boyce, A.M.; Ghosh, A.; Korotkin, I.; Sahu, S.; Sulzer, V.; Timms, R.; Tranter, T.G.; Zyskin, M.; Cooper, S.J.; Edge, J.S.; Foster, J.M.; Marinescu, M.; Wu, B.; Richardson, G.; Progress in Energy (July 2022) https://doi.org/10.1088/2516-1083/ac7d31 (See also MSM) 
  33. Interpretable machine learning for battery capacities prediction and coating parameters analysis; Liu, K.; Niri, M.F.; Apachitei, G.; Lain, M.; Greenwood, D.; Marco, J.; Control Engineering Practice (July 2022) https://doi.org/10.1016/j.conengprac.2022.105202  
  34. Sequential Deposition of Integrated Cathode-Inorganic Separator-Anode Multilayers for High Performance Li-Ion Batteries; Evans, J.D.; Sun, Y.; Grant, P.S.; ACS Applied Materials and Interfaces (July 2022) https://doi.org/10.1021/acsami.2c03828  
  35. Design of experiments applied to lithium-ion batteries: A literature review; Román-Ramírez, L.A.; Marco, J.; Applied Energy (Aug 2022) https://doi.org/10.1016/j.apenergy.2022.119305  
  36. Optimization of Electrode and Cell Design for Ultrafast-Charging Lithium-Ion Batteries Based on Molybdenum Niobium Oxide Anodes; Lakhdar, Y.; Geary, H.; Houck, M.; Gastol, D.; Groombridge, A.S.; Slater, P.R.; Kendrick, E.; ACS Applied Energy Materials (Aug 2022) https://doi.org/10.1021/acsaem.2c01814  
  37. Rheology and Structure of Lithium-Ion Battery Electrode Slurries; Reynolds, C.D.; Hare, S.D.; Slater, P.R.; Simmons, M.J.H.; Kendrick, E.; Energy Technology (Aug 2022) https://doi.org/10.1002/ente.202200545  
  38. Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review; Entwistle, J.; Ge, R.; Pardikar, K.; Smith, R.; Cumming, D.; Renewable and Sustainable Energy Reviews (Sept 2022) https://doi.org/10.1016/j.rser.2022.112624  
  39. Exploring the influence of porosity and thickness on lithium-ion battery electrodes using an image-based model; Boyce, A.M.; Lu, X.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Sept 2022) https://doi.org/10.1016/j.jpowsour.2022.231779 (See also MSM 
  40. Extensional rheology of battery electrode slurries with water-based binders; Reynolds, C.D.; Lam, J.; Yang, L.; Kendrick, E.; Materials and Design (Oct 2022) https://doi.org/10.1016/j.matdes.2022.111104  
  41. Systematic analysis of the impact of slurry coating on manufacture of Li-ion battery electrodes via explainable machine learning; Faraji Niri, M.; Reynolds, C.; Román Ramírez, L.A.; Kendrick, E.; Marco, J.; Energy Storage Materials (Oct 2022) https://doi.org/10.1016/j.ensm.2022.06.036  
  42. The Impact of Calendering Process Variables on the Impedance and Capacity Fade of Lithium-Ion Cells: An Explainable Machine Learning Approach; Faraji Niri, M.; Apachitei, G.; Lain, M.; Copley, M.; Marco, J.; Energy Technology (Oct 2022) https://doi.org/10.1002/ente.202200893  
  43. Insights into architecture, design and manufacture of electrodes for lithium-ion batteries; Zhu, P.; Slater, P.R.; Kendrick, E.; Materials and Design (Nov 2022) https://doi.org/10.1016/j.matdes.2022.111208  
  44. Machine learning for investigating the relative importance of electrodes’ N:P areal capacity ratio in the manufacturing of lithium-ion battery cells; Niri, M.F.; Apachitei, G.; Lain, M.; Copley, M.; Marco, J.; Journal of Power Sources (Nov 2022) https://doi.org/10.1016/j.jpowsour.2022.232124  
  45. Roadmap on Li-ion battery manufacturing research; Grant, P.S.; Greenwood, D.; Pardikar, K.; Smith, R.; Entwistle, T.; Middlemiss, L.A.; Murray, G.; Cussen, S.A.; Lain, M.J.; Capener, M.J.; Copley, M.; Reynolds, C.D.; Hare, S.D.; Simmons, M.J.H.; Kendrick, E.; Zankowski, S.P.; Wheeler, S.; Zhu, P.; Slater, P.R.; Zhang, Y.S.; Morrison, A.R.T.; Dawson, W.; Li, J.; Shearing, P.R.; Brett, D.J.L.; Matthews, G.; Ge, R.; Drummond, R.; Tredenick, E.C.; Cheng, C.; Duncan, S.R.; Boyce, A.M.; Faraji-Niri, M.; Marco, J.; Roman-Ramirez, L.A.; Harper, C.; Blackmore, P.; Shelley, T.; Mohsseni, A.; Cumming, D.J.; JPhys Energy (Nov 2022) https://doi.org/10.1088/2515-7655/ac8e30 (See also FutureCat) 
  46. Cross-sectional analysis of lithium ion electrodes using spatial autocorrelation techniques; Lain, M.J.; Apachitei, G.; Román-Ramírez, L.; Copley, M.; Marco, J.; Physical Chemistry Chemical Physics (Dec 2022) https://doi.org/10.1039/D2CP03094B  
  47. Direct reuse of aluminium and copper current collectors from spent lithium-ion batteries; Zhu, P.; Driscoll, E.H.; Dong, B.; Sommerville, R.; Zorin, A.; Slater, P.R.; Kendrick, E.; Green Chemistry (Dec 2022) https://doi.org/10.1039/D2GC03940K (See also CATMAT, ReLIB) 
  48. Synthesis, structure and electrochemical properties of a new cation ordered layered Li-Ni-Mg-Mo oxide; Dong, B.; Castells-Gil, J.; Zhu, P.; Driscoll, L.L.; Kendrick, E.; Allan, P.K.; Slater, P.R.; Materials Advances (Jan 2023) https://doi.org/10.1039/D2MA00981A (See also CATMAT 
  49. Quantitative assessment of machine-learning segmentation of battery electrode materials for active material quantification; Bailey, J.J.; Wade, A.; Boyce, A.M.; Zhang, Y.S.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (Feb 2023) https://doi.org/10.1016/j.jpowsour.2022.232503 (See also MSM) 
  50. Optimisation of Industrially Relevant Electrode Formulations for LFP Cathodes in Lithium Ion Cells; Apachitei, G.; Hidalgo, M.; Dogaru, D.; Lain, M.; Heymer, R.; Marco, J.; Copley, M.; Batteries (March 2023) https://doi.org/10.3390/batteries9040192  
  51. Machine Learning in Lithium-Ion Battery Cell Production: A Comprehensive Mapping Study; Haghi, S.; Hidalgo, M.F.V.; Niri, M.F.; Daub, R.; Marco, J.; Batteries and Supercaps (April 2023) https://doi.org/10.1002/batt.202300046  
  52. Numerical Design of Microporous Carbon Binder Domains Phase in Composite Cathodes for Lithium-Ion Batteries; Ge, R.; Boyce, A.M.; Sun, Y.; Shearing, P.R.; Grant, P.S.; Cumming, D.J.; Smith, R.M.; ACS Applied Materials and Interfaces (May 2023) https://doi.org/10.1021/acsami.3c00998  
  53. Direct Observation of Dynamic Lithium Diffusion Behavior in Nickel-Rich, LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes Using Operando Muon Spectroscopy; McClelland, I.; Booth, S.G.; Anthonisamy, N.N.; Middlemiss, L.A.; Pérez, G.E.; Cussen, E.J.; Baker, P.J.; Cussen, S.A.; Chemistry of Materials (May 2023) https://doi.org/10.1021/acs.chemmater.2c03834 (See also FutureCat, Degradation 
  54. Discrete element method and electrochemical modelling of lithium ion cathode structures characterised by X-ray computed tomography; Ge, R.; Boyce, A.M.; Shui Zhang, Y.; Shearing, P.R.; Cumming, D.J.; Smith, R.M.; Chemical Engineering Journal (June 2023) https://doi.org/10.1016/j.cej.2023.142749  
  55. Design of experiments for optimizing the calendering process in Li-ion battery manufacturing; Hidalgo, M.F.V.; Apachitei, G.; Dogaru, D.; Faraji-Niri, M.; Lain, M.; Copley, M.; Marco, J.; Journal of Power Sources (July 2023) https://doi.org/10.1016/j.jpowsour.2023.233091  
  56. Microstructure of Conductive Binder Domain for Electrical Conduction in Next-Generation Lithium-Ion Batteries; Lu, X.; Lian, G.J.; Ge, R.; Parker, J.; Sadan, M.K.; Smith, R.; Cumming, D.; Energy Technology (Aug 2023) https://doi.org/10.1002/ente.202300446  
  57. Rapid sintering of Li6.5La3Zr1Nb0.5Ce0.25Ti0.25O12 for high density lithium garnet electrolytes with current induced in situ interfacial resistance reduction; Stockham, M. P.; Dong, B.; James, M. S.; Zhu, P.; Kendrick, E.; Slater, P. R.; Energy Advances (Aug 2023) https://doi.org/10.1039/D3YA00123G (See also CATMAT 
  58. Insights into surface chemistry down to nanoscale: An accessible colour hyperspectral imaging approach for scanning electron microscopy; Nohl, J.F.; Farr, N.T.H.; Sun, Y.; Hughes, G.M.; Stehling, N.; Zhang, J.; Longman, F.; Ives, G.; Pokorná, Z.; Mika, F.; Kumar, V.; Mihaylova, L.; Holland, C.; Cussen, S.A.; Rodenburg, C.; Materials Today Advances (Aug 2023) https://doi.org/10.1016/j.mtadv.2023.100413 (See also FutureCat, Degradation) 
  59. A Review of the Applications of Explainable Machine Learning for Lithium–Ion Batteries: From Production to State and Performance Estimation; Faraji Niri, M.; Aslansefat, K.; Haghi, S.; Hashemian, M.; Daub, R.; Marco, J.; Energies (Sept 2023) https://doi.org/10.3390/en16176360  
  60. Direct observations of electrochemically induced intergranular cracking in polycrystalline NMC811 particles; Parks, H.C.W.; Boyce, A.M.; Wade, A.; Heenan, T.M.M.; Tan, C.; Martínez-Pañeda, E.; Shearing, P.R.; Brett, D.J.L.; Jervis, R.; Journal of Materials Chemistry A (Sept 2023) https://doi.org/10.1039/D3TA03057A (See also Degradation, MSM 
  61. Use of positron emission particle tracking to assess mixing of a graphite-based lithium-ion anode slurry in an Eirich mixer; Hare, S.D.; Werner, D.; Windows-Yule, C.R.K.; Wheldon, T.Z.K.; Kendrick, E.; Simmons, M.J.H.; Chemical Engineering Research and Design (Sept 2023) https://doi.org/10.1016/j.cherd.2023.08.007