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* Materials and protocols
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The overarching goals of this programme are to:

* |dentify stress-induced deqgradation processes
» Study synergistic effects in full cells
« Obtain correlative signatures for degradation

 Determine how cycling programs and materials solutions,
mitigate degradation

* Feedback fundamental understanding and provide insights into
how they can be improved.

~~ THE FARADAY
INSTITUTION



Structure of the Project

WP1: Chemical Degradation (Clare Grey)

WP2: Materials Degradation (Paul Shearing)

WP3: Electrochemical Degradation (Ulrich Stimming)
WP4: Materials Design & Supply (Serena Corr)

Project Leader: Rhod Jervis
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Materials Selection and
Protocols

~~ THE FARADAY
INSTITUTION




Materials Selection
LiNiO,

* NMC 311 Compositions in the coloured
. . section must contain Ni**
e Graphite (natural and synthetic)

* 1 M LiPF6, EC/EMC 3/7 weight ratio, 1- Gomposiiions

2% VC additive on tie line correspond
contain Co**_Ni**

Suppliers and Mn*

LiNi, ;Mn, .Co, O,

LiNi_ ,Mn, ,Co, O}
LiNi, ,Mn, .Co, .0,

* 811 — Targray, NEI, consortium

 Graphite — Elcora, SGL, Hitachi LiCo0, LiMnO
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Protocols

* Detailed cycling and cell assembly protocols have been produced in
consultation with WMG and JLR to ensure consistency across the

consortium
e 811 half cells cycled from 2.5V to 4.2 V vs Li
4.3V and 4.4V for ‘stressed’ cycling
e Graphite cycled from 0.01Vto 1.0V
* Full cells: 2.5V —-4.2V, CCCV charge, CC discharge
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Objectives Last 4 months

* Developing a portfolio of characterisation methods

* First stage characterisation for real (pristine) electrodes
e Securing a materials supply chain

* Championing in situ and operando approaches
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Scientific Highlights




Cycle Performance
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Results: XPS & XAS
» Surface characterisation of pristine and ambient treated

Col,a| | | Nils NMC particles with XPS and XAS
edge edge

e Confirmation that real electrodes give good signal without
requiring model system.

* Initial simulation of XAS spectra using CTM4XAS
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Results: TOF SIMS O, sputtering of NMC material

* Ni, Mn and Co
distribution highly
inhomogeneous

* Depth profile reveals
surface enrichment of
OH, due to air transfer

S e (need improved transfer)

: : , poesibiel e TOF-SIMS instrument

150 x 150 um maps cannot resolve elemental
distribution within
individual particles
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Results: EC-STM in Glove Box

deintercalation.
Step Height 3.13nm

200nm
Py T

Pristine HOPG
Step Height 1nm

Standard commercial electrolyte:
Roughening of the surface and noisy STM

images at lower potentials due to the swelling =

of graphene layers with a Step height 3.38nm. i i .gte helw;]t T3
SEI formation during Li intercalation pheight 2.

1M LiPF6 in EC:DMC 1:1 v/v
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Results: Preliminary STEM  Pristine NCM 811 FIB

- F % § A R RN E T T 3 i
# o w w ¥ ol o ol o B Ty ] & e A

spinel
dislocations, region
possibly screw,
edge mixed...
but we need
more data

HiRes Spatailly resolved
EELs possible

We can distinguish some of the termination of plane

of atoms in the middle of a crystal. THE FARADAY
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Clear phase separation region, sample more susceptible to e-beam damage then pristine 811.
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Results: In-situ TEM Development

Trials of deposition of NMC powder on Further materials’ structure investigations have

electrochemical in-situ TEM chips were done. been done, especially EDX/STEM mapping of
NMC811 particles from Targray and Dr Serena

Corr’s group. Non-uniform distribution of the
transition metals has been found.

C Atomic % 100 Co atomic % Mn atomic %

Figure 1. (A) Optical microscope image of an electrochemistry chip with an overlaid image
of deposited layer of NMC811. The yellow area is a gold layer that acted as a target for
selected area deposition. (B) SEM image of the same deposit.

Figure 2. EDX/STEM maps of NMC811 particles from Glasgow.
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Li ion hopping: Hopping rates calculated from NMR spectra

Hopping rates at different SOC
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Assumptions:

- All sites participate in hopping process
- Same rate for all hops

- Random distribution of TM ions

Challenge:

- Model depends on linewidths of the peaks involved in

the hopping process (difficult to determine)

—> Hopping rates calculated for reasonable estimates

Voltage (V)

Li mobility (arb. unit)x10°
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®in Li[-l_x)NiU_gMI"'lgj 000_102

Overall trend
agrees well with
GITT data!
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Results: Gas analysis of cycled cells

* NMC811 half cell cycled
in 1.5M LiPF, in EC for 10
cycles at C/2

* 0,, H, and CO, detected
once the cell is connected
to mass spectrometer

* Formation of gases during
subsequent cycling at C/2
or 1Cis not detectable
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Results: Machine Learning Using EIS Data

EIS measurement on coin cells during cycling and a machine learning model to predict SoH are experimented preliminarily

EIS of commercial coin cell during cycling: bode plot

Frequency(Hz) Cycle number

EIS of commercial coin cell during cycling: Nyquist plot
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§ Predicted cycle number |

EIS is measured in different phases of
charge/discharge during cycling.

Using the machine learning model trained with EIS
data, cycle number can be inferred with another set
of EIS data measured under similar condition.
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Intensity (arb. units)

Results: Nanostructured NMC synthesis

Microwave synthesis affords clean products at 775°C after only 3 hours

— 775°C
— 750°C
— 650°C
) b ]
| b N
JL‘ ity JL.“"’W JT")L‘ Polydisperse particles with sizes
10 20 30 40 50 60 7

0 typically around 250 nm obtained
CuKa26 (degrees)

Sheffield — new routes to nanostructured NMC-811
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Results: Al,O, coating of NMC-811

* Coating with Al,O, can provide protective layer surrounding NMC to avoid breakdown by HF formed
through electrolyte decomposition

* Two proposed initial strategies : Al,O, coating via nitrate precursor and use of nanostructured Al,O,

-

— —)
e Pristine NMC-811 mixed

with aluminium nitrate

e Evaporation of solvent

e Calcination at 450°C

-

Sol-gel synthesis of Al,O,

g

N
\

nanosheets

~

Sheffield — strategies for degradation mitigation through coating

Coating via precursor Coating via nanostructures
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Voltage limits in Li-ion batteries: XAS @ DLS
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Capacity Limits in Li-ion batteries: In-situ XRD @ DLS

4.5

4.0

35

Voltage vs. Li*/Li [V]

3.0

14.4

14.3

14.2

14.1

Lattice parameter ¢ [A]

14.0
0.20

Ni2* stoichiometry
o o o
[=1 = =
w [=] w

2
o
(=]

—NCM 111
—NCM 622
—NCM 811
anN = 2 NCM 111
L. * NCM 622
YO ‘.'o#
el P 4 NCM 811
& A
Ay
L
A o Ny
ba a: 'o:"l.
Ay, Ceg
A “I
L
i [
L ]
u
; = NCM 111
® NCM 622
* a 4 NCM 811
150 100 50 0
Capacity [mAhg?]

Change from reversible
to irreversible reactions:

OMnNi Co OLi O

» Collapse in c-lattice
parameter

> Minimum in Ni2*
> Ni2* content close to
zero

Diamond Light Source, Beamline 111

Oxygen release

~~ THE FARADAY
INSTITUTION



3D XRD Understanding Heterogeneities @ ESRF
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Future Engagement: Synchrotron

* Manchester/Diamond/Cambridge — in situ XAS/XPS — BO7 and ALBA,
ex situ NMC 109

* Imperial — Cu/Graphite interface XANES 120

* UCL/Diamond — operando XRD — 111, nanoprobe 114
* Diamond/UCL/Cambridge — Long duration experiments — 111
* UCL/NREL — XRD CT — ESRF ‘
 Liverpool — Kerr Gated Raman - Central laser facility
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Large Scale Facilities: Neutron

* SEl Formation from Neutron Reflectometry (Manchester)
- Weatherup group using Offspec reflectometer to characterise the SEI formation and ™

growth for electrolytes on nickel, graphene and silicon surfaces. Neutron
Reflectometry

* Nanostructured 811 NMC (Sheffield)

- Nanostructured NMC-811 shows enhanced cycling and improved stability when coated
with Al,O4

- Proposed total scattering on POLARIS to examine pristine & coated materials,
characterise nanostructure and alumina surface structure (Cussen, Sheffield)

- Grey group, Cambridge has neutron diffraction structure of commercial NMC-811
material (Munich reactor source) to share and contrast with nano-PDF.

 Sian Dutton — Spin polarised neutrons on d7 at ILL Nanostructured NMC-811 from
Corr group for PDF analysis by

Cussen (Sheffield)
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Plans: Observing Growth Dynamics by Inpainting

Acquisition Reconstruction
Acquisition Rate

Time 0.0 s Frame #1

Even low sub-sampling rates identify all the particles and permit analysis
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Plans: Spatially resolved dissolution of NMC

* Studying degradation at individual S—

b 18
0 82%.
particle/nanoscale level (can resolve effect ‘
10C 0.2C 0.2 C for 20 cycles
1{

of elemental inhomogenities) L W i W A

. . . | a f
* |n situ spectro-microscopy using X-ray
Transmission Microscopy (TXM) and X-ray |
absorption spectroscopy (XAS): Q. 2 =@ L@ @, 7 @)
 Spatially resolved chemical information as TXM on LiCoO, Xu et al., ACS Energy Lett., 2017, 2
function of time and cycling conditions on ogllVIShC oV ThCol 0BV ttkCall o))
NMC

05 £10 05 £10 0.5

0 20 0 20 0
0 10 20 0 10 20 0 10 20 Co

um pum pum

TXM of CoCrMo corrosion under simulated conditions of human body
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Hi5 has arrived

This week

Imperial College London

Main chamber at
100°C to remove
moisture, etc

Current vacuum level:

107 / 108 mbar
Target vacuum level:
1071° mbar
Antechamber with
probes to be added

Next three months:

Initial tests on Hi5

Longer term:

Binderless-carbon free
NMC electrodes
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Plans: Scalable synthesis of NMC materials

Products

Step 1: The scalable confined jet
mixer makes nanoparticles in flow

Step 2 The precipitates from our
process are lithiated via SS reaction to
make NMC or doped variants

Precursor
P =24 MPa
T=20°C
Q=Q,/2

Precursor
P =24 MPa
T=20°C

Q=Qu/2
In year 2 we will scale up leading materials /

from the project up to 2kg h!

Supercritical Water
P =24 MPa

T <450 °C

Q= Qg

R i :

Background Materials: 7 High Ni NMCs developed, simple process; all phase pure
Target: Over 300 Doped NMCs made/tested (Dec18) visitors / flowchart
Future: Spray dry, Start scale up in early 2019 for lead materials from above work

UCL — Scalable synthesis of NMC and variants THE FARADAY
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Partner Engagement: UCL/NPL/NREL/NASA
Johnston Space Centre, NASA, Texas

Bore Chambers Cell Chamber Ejecta Mating Sections
Slows down and extracts Includes heating system for Captures ejected solids such
heat from escaping flames thermally induces failure as the electrode assembly

Ref - Li-ion battery failure: Linking external risks to internal
events, Power Sources Conference Proceedings, Denver,

2018. LT, el
Left to right: John Darst (Staff, NASA), Hasan (intern, NASA), Demonstratlon of
Martin Pham (PhD candidate, UCL) Thomas Heenan (Post-Doc, cells for safe failure after
UCL/Faraday), Bob Hines (astronaut candidate, NASA), Donal mechanical abuse.

Finegan (Staff, NREL/NASA), Abhi Raj (PhD candidate, Princeton).

iiNREL g = THE FARADAY
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e Electrode materials supply

* Large scale coating in the dry room

* |nput into formulation of electrodes

* Development of new materials
from WP4 into full cells

QinetiQ
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Johnson Matthey

- ‘4D Imaging’ to mimic calandering
process of NMC

- Load stage purchased under Fl
project to continue work, and
extend to degradation studies

Strain

dh Johnson Matthe — THE FARADAY
m J M Inspiring science, enhancing IifZ INSTITUTION



Conclusions

e Correlation of a suite of techniques to study battery electrodes

* 811 provides unique challenges in sample preparation and
degradation mechanisms

* Coordinated approach to in situ and large scale facilities
Focus for the Next Period

* Continue challenge led research across WPs (metal dissolution,
oxygen loss, potential windows)

* Cycled materials
* Correlation across techniques
 Collaboration with other fast starts (identifying ambassadors)
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