

Faraday Institution FSP8-Month ReviewPostdoc-FocusedSession

Name: Federico M Pesci WP: Degradation WP3 Institution: Imperial College London

The Team at ICL's Department of Materials

Co-investigators

Ainara Aguadero

Mary Ryan

Postdoctoral researchers

Mohammed Koronfel

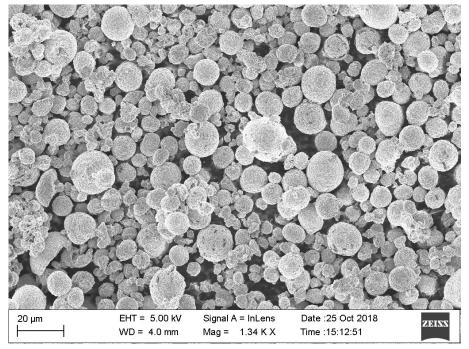
fel Federico Pesci

PhD Students

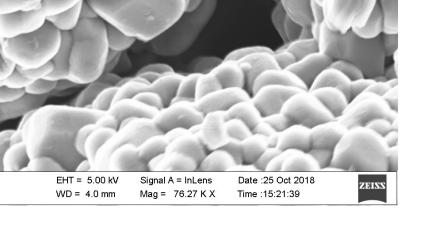
Daisy Thornton

lfan Stephens

Page 2

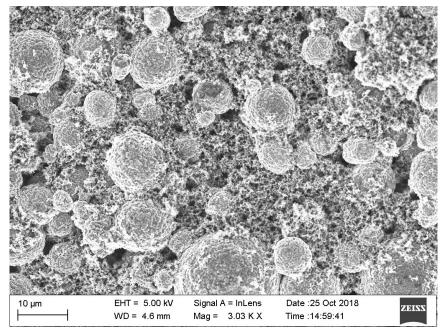


Current Research and Future Plans


- Microstructural Characterisation
- Chemical Analysis on Pristine Materials Surface Analysis
- Cell Assembly and Electrochemical Cycling on going
- Post mortem Analysis Surface and Bulk Analysis *future plan*
- In situ analysis *future plan*

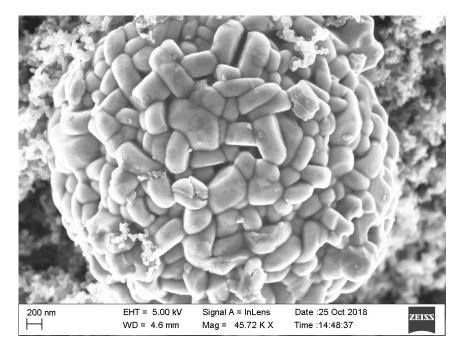
Microstructural Characterisation NCM 811 Pristine Powders

Courtesy of Mohammed Koronfel

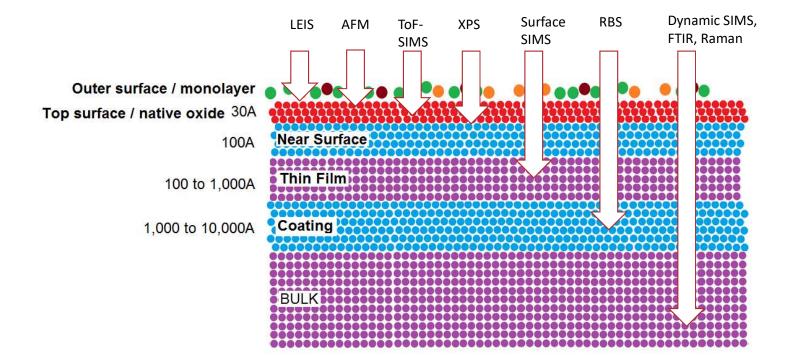

200 nm

 \vdash

Page 4

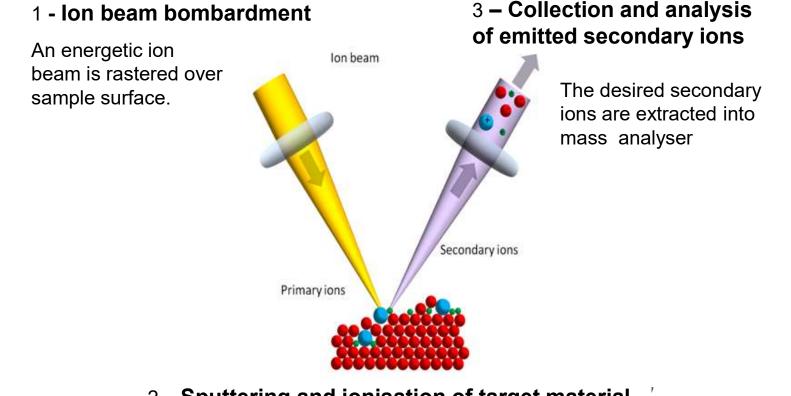


Microstructural Characterisation NCM 811 Pristine Electrodes


Courtesy of Mohammed Koronfel

Page 5

Surface Analysis Characterisation

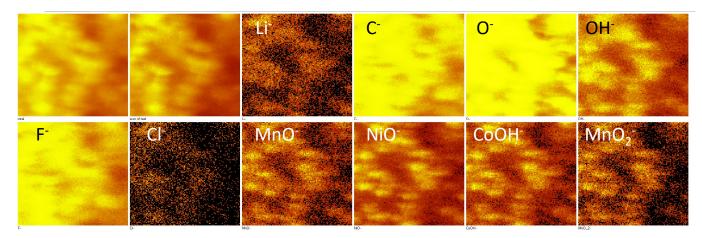


Courtesy of Sarah Fearn

Page 6

Surface Analysis Characterisation – ToF SIMS

Courtesy of Sarah Fearn

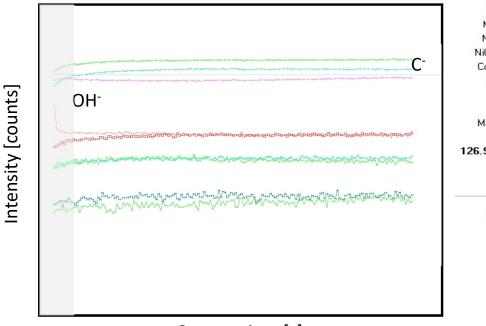

2 – Sputtering and ionisation of target material

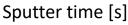
Page 7

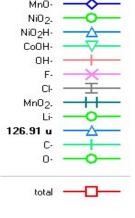
F M Pesci, Degradation WP3

ToF-SIMS on pristine NMC electrodes

150 x 150 μm maps

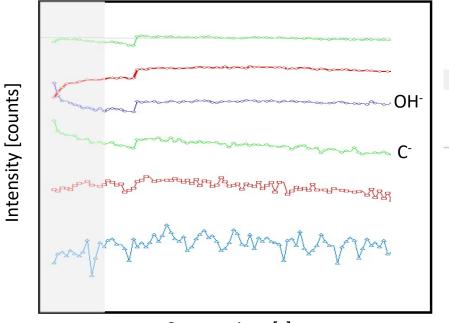

- Ni, Mn and Co distribution highly inhomogeneous
- OH- appears to be present on the electrode surface.
- TOF-SIMS can not resolve elemental distribution within individual particles


No vacuum suitcase used! Sample exposed to air for few minutes

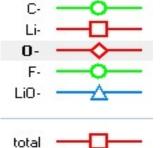

Page 8

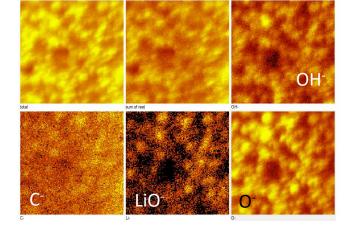
ToF-SIMS on pristine NMC electrodes – Transfer without Vacuum Suitcase

Depth profiles reveal OH- enrichment on the surface of the electrode, whereas other negative ions including C- appear to be depleted in the very surface of the electrode.


No vacuum suitcase used for these measurements! Sample exposed to air for few minutes Is the OH- coming from air exposure or are already present in the material received?

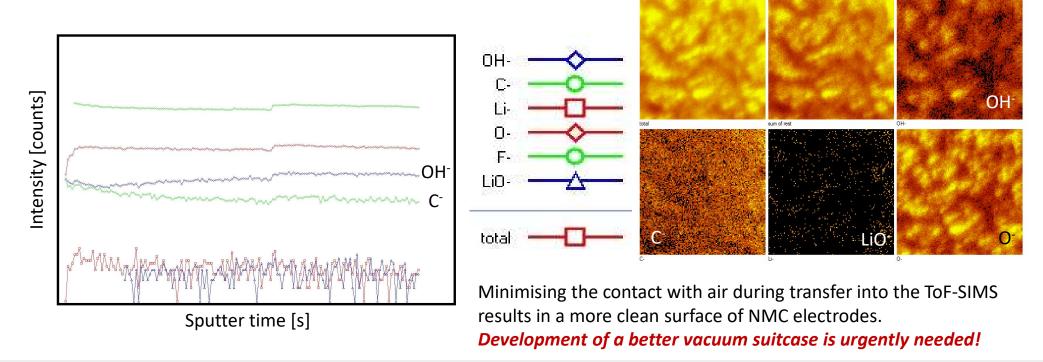
Page 9




ToF-SIMS on pristine NMC electrodes – Sample Left in Air

Sputter time [s]

OH-



After exposing the NMC electrodes to air for two weeks, the electrode surface appears enriched in C- species. (Li carbonate?)

ToF-SIMS on pristine NMC electrodes – Pristine Sample (Minimum exposure to air)

Challenges and Future Plans

- Challenges:
 - Exposure to air leads to dirty electrodes surfaces need of design a practical vacuum suitcase.
 - ToF-SIMS does not provide enough lateral resolution to analyse the chemical composition within a single particle.
- Future Plans
 - FIB-SIMS 3D reconstruction of pristine and cycled electrodes (*lateral resolution 25nm!!*)
 - Electrochemical cycling
 - Microstructural and chemical surface analysis of postmortem cells.

Hi-5 – Work in progress

- Main chamber at 100°C to remove moisture, etc
- Current vacuum level: 10⁻⁷ / 10⁻⁸ mbar
- Target vacuum level: 10⁻¹⁰ mbar
- Antechamber with probes to be added

- 1. X
- 2. Y
- 3. Z
- 4. Chemical analysis: Dual detection of positive and negative ions simultaneously!
- 5. Processing within vacuum environment
 - Isotopic labelling
 - In situ electrochemical measurements on solid state devices
- Volume reconstruction
- Will resolve elemental distribution within individual NMC particles

Spatially resolved dissolution of NMC

- In situ spectro-microscopy using X-ray Transmission Microscopy (TXM) and X-ray absorption spectroscopy (XAS):
- Spatially resolved chemical information as function of time and cycling conditions on NMC
- Chemical analysis of Cu/Graphite interface (XAS – Diamond proposal submitted)

Mohammed Koronfel

Mary Ryan

Probing gas evolution

- Ultra-sensitive and real time electrochemical mass spectrometry
 - Can measure submonolayer amounts of gases evolved, e.g. 30 nA/cm² O₂ evolution
- Ideal for model studies with low surface area, e.g. current collector or PLD-deposited NMC
 - Not used before in battery science

Daisy Thornton

Ifan Stephens

Page 14

Conclusions

- Microstructural characterisation shows an inhomogeneous distribution of particle size ranging from few μm to tenth of μm
- ToF-SIMS analysis also shows an inhomogeneous distribution of NMC particles
- ToF-SIMS analysis suggests an enrichment in hydroxide species on the surface of the NMC particles as a result of exposure to air.
- Current lateral resolution is not high enough to allow chemical analysis within single particles.
- A unique FIB-SIMS is currently being commissioned at Imperial College and will allow chemical analysis within single particles.

Acknowledgments

Dr Ainara Aguadero

Dr Richard Chater

Dr Sarah Fearn

Dr Rowena Brugge

Thank you!

Prof Mary Ryan

Dr Ifan Stephens

Mohammed Koronfel

Daisy Thornton

THE FARADAY INSTITUTION

Page 16

