

Atomistic modelling and experimental validation of voltage and entropy profiles in Li-ion cells

07-11-2018 Michael Mercer, Harry Hoster

Introduction to MultiScale Modelling project

To advance current models and develop design tools which can accurately predict the performance and lifetime of existing and future batteries requires a fully integrated and tightly coordinated programme, drawing together the key modelling capabilities into a multiscale approach, across length and time scales.

• First step: quantify voltage and entropy information dependent on electrode material structure.

- Use lattice gas methods (Monte Carlo and mean field):
 - Rational understanding of voltage and entropy information

Battery aging: voltage vs. peak amplitude shifts

Voltage

Pristine cell

*C.R. Birkl et al., J. Power Sources 241 (2017) 373-386

Amplitude

Horizontal shift: Loss of lithium and/or

active material.

Vertical shift:

Structural changes in electrode materials (defects)

**P. Osswald et al., Electrochim. Acta 177 (2015) 270-276

Li-ion cells with systematically varied cathode compositions

Image: borrowed and modified from Ran Liu's group homepage, Penn State

Experimental results: Variable defect fraction

THE FARADAY

NSTITUTION

Lancaster University

Monte Carlo simulations: effect on entropy profiles

Li occupation-dependent parameters

- Mean field approach: rapid atomistic model.
- Hamiltonian: $H = \varepsilon_1 N_1 + \varepsilon_2 N_2$
- $H = E_0(N_1 + N_2)$ + $4J_1N_1N_2 / N$
 - + $6(J_2 + \delta)N_1^2 / N$ + $6(J_2 - \delta)N_2^2 / N$

S. Schlueter, R. Genieser, D. Richards, H.E. Hoster, M.P. Mercer*, PCCP 20 (2018) 21417

Experiment/model comparison

Cathode composition

Voltage profile

Incremental capacity analysis (dQ/dV)

Entropy (ΔS) profile

S. Schlueter, R. Genieser, D. Richards, H.E. Hoster, M.P. Mercer*, PCCP 20 (2018) 21417

Experiment/model comparison

M1: Best fit parameters assumed to be valid for all compositions **Pinned Li only**

Lancaster University

THE FARADAY

INSTITUTION

parameters fitted compositions **Pinned Li + best** parameters

M2b: including vibrational entropy Pinned Li + best parameters

S. Schlueter, R. Genieser, D. Richards, H.E. Hoster, M.P. Mercer*, PCCP 20 (2018) 21417

Mean field simulations: Trends in the fitting parameters

THE FARADAY

INSTITUTION

Composition	E₀/eV	J ₁ / meV	J ₂ / meV	δ / meV
LiMn ₂ O ₄	-4.11	32.8	-0.6	1.4
Li _{1.05} Mn _{1.95} O ₄	-4.13	35.2	-0.6	1.8
$\mathrm{Li}_{1.1}\mathrm{Mn}_{1.9}\mathrm{O}_4$	-4.17	35.6	1.8	3.0
Li _{1.15} Mn _{1.85} O ₄	-4.22	37.2	6.2	4.4
Li _{1.2} Mn _{1.8} O ₄	-4.32	43.1	12.7	5.1

Lancaster University

Point term E₀: Decreases. Lattice becomes more attractive to Li Li-Li terms J₁, J₂, δ : all increase (more repulsion) Explanation:

- . Unit cell shrinks with more Li excess
- Mn oxidation state changes

Li intercalation in graphite: staging phenomena

Li intercalation in graphite: THE FARADAY Lancaster staging phenomena

Li intercalation in graphite: THE FARADAY Lancaster staging phenomena

Li intercalation in graphite: THE FARADAY Lancaster staging phenomena

Summary and outlook

- Mean field: experiment/model validation with physically meaningful parameters
- Can recognise and quantify order/disorder transitions:
 - Effects on voltage, dQ/dV and entropy
- Defects pin Li sites: ٠
 - Suppress ordered phases
- Future and ongoing projects: ٠
 - Li/graphite half cell characterisation:
 - controlling temperature and particle size.
 - model validation: role of surface versus bulk.
 - **Reduced order description** of voltage profiles: in collaboration with Oxford.
 - Role of configurational entropy.
 - Reduced number of parameters.

0.3

0.2

0.1

THE FARADAY

INSTITUTION

Lancaster 288

30

20

10

0

0.0

University

m.mercer1@lancaster.ac.uk

Acknowledgements

STFCBATTERIES.ORG

Proof of Concept Award

Mobility Grant

University of Córdoba, Argentina:

E.-M. (Maxi) Gavillán-Arriazu Manuel Otero Agustin Sigal Ezequiel P.M. Leiva Lancaster:

Steffen Schlueter Sophie Finnigan Daniel Richards

Warwick:

Ronny Genieser

Southampton:

Denis Kramer

Oxford:

David Howey