

Feasibility of SSTDR for Identifying Electrochemical Signatures of Degradation

PDRA Presentation Name: Musbahu Muhammad WP:3 Institution: Newcastle University

WP3: Electrochemical Signatures of Degradation

Ulrich Stimming, Newcastle University, (Lead) Ainara Aguadero, Imperial College London Peter Cumpson, Newcastle University Alpha Lee, Cambridge University Mohamed Mamluk, Newcastle University Volker Pickert, Newcastle University

Outline

- Research background
- Reflectometry Sensors for Fault Location
- Future Milestone

Background

Objectives

- Identify electrochemical signals related to degradation using microscopic techniques
- Identify various properties relating to SoH, SoC using electrical techniques and correlate with the other work packages
- Transfer this knowledge from the cell to module and the stack
- Develop tools for analysing and managing large data (degradation signatures)
- Develop a concept of novel BMS that identify signals indicating degradation

Battery Diagnostics Methods

OEM Diagnostics Methods :Nissan Leaf

SoH Monitoring Using Reflectometry

- Time Domain Reflectometry TDR
- Frequency Domain Reflectometry FTDR
- Standing Wave Reflectometry SWR
- Mixed Signal Reflectometry MSR
- Coherent Optical Time Domain Reflectometry COTDR
- Sequence Time Domain Reflectometry STDR
- Spread Spectrum Time Domain Reflectometry SSTDR

SoH monitoring using TDR

TDR Basics – signal propagation

- Impedance discontinuity leads to reflection of travelling signal
- Pulse signal is driven into utilised cable, then travels down the line
- At impedance disruption $Z_L > Z_O$ a signal portion is reflected back
- Transmitted signal travels further, get reflected at the event exit $Z_F > Z_L$ and travels to the source
- At the cable end, the remaining signal is reflected back
- Cable properties and fault location easy to determine Reflection coefficient $\rho = V_{reflected}/V_{incident}$

+

TDR on Coaxial Cable

- Various length of coaxial cable tested under open, splice and short circuit conditions
- Characteristic impedance of the cable easily determined
- The location of the fault or impedance discontinuity can be determined using propagation delay

Fig. 3a Pulse signal transmitted

Fig. 3 c $Z_F = Z_L$

(1 V/div)

(1µs/div)

Fig.3b Closed up of transmitted signal

 $Fig.\, 3d\,\, Short\,\, circuited$

TDR on coin cells

Voltage

variation

Damaged cell OCV: 1.000 V Scratched cell OCV: 2.874 V Overcharged cell OCV: 3.015 V Pristine cell OCV: 3.141 V

TDR Pulse width: 0.1 ms Frequency: 1 KHz Magnitude: 500 mV

TDR

Conclusion on TDR

- Higher energy in the signal
- Interference with other/ by other signals
- Narrow time
- Susceptible to noise

- Low energy in the signal time (PN code)
- Minimal or "NO" interference
- Broad Features allows it to be used in live aircraft wires
- Noise immunity

STDR/SSTDR

- Correlation tells time shift between two signals*
- Signals are so small below the allowable noise margin of any signal

*(shift signal in time, multiply them, integrate or add them)

Simulation

Page 13 Name of Presentation

S/SSTDR

Advantages

- Detect and locate faults on Dead or Live cables in "real time" 60- 400 Hz Ac, 5-270 V DC
- Precise fault location of +/-2 % on cables up to 3650 metres
- Monitor system integrity without impact on system operation
- Suitable for intermittent condition when the fault is present
- Many signals peacefully co exist (frequency band sharing (CDM)
- Immune to noise
- Multiple channel/paths
- Loss/attenuation
- Low interference/Jamming potential

Fig. 6b Multiple junctions [Furse et al]

Future Milestones

- Build a test rig to establish the suitability of S/SSTDR in identifying cell degradation signatures
- Correlate the findings with microscopic & spectroscopic techniques
- Correlate identified degradation signatures using SSTDR across work packages
- Transfer this knowledge from the cell to module and the stack
- Establish regular engagement with modelling fast-start to coordinate cell modelling and ReLIB for the development of non-invasive SoH techniques for re-use or recycling.
- IE:Spier New technologies on grading batteries and testing processes

Thanks for Listening

Q&A