Mapping Lithium Ion Mobility in All-Solid-State Batteries

How does hot pressing affect lithium diffusion in argyrodite electrolytes?

Alice M. Rodgers, Gregory J. Rees, Dominic Spencer-Jolly, Bartholomew T. Payne, Peter G. Bruce

Department of Materials, University of Oxford, OX2 6NN

Abstract

- > Solid State Batteries (SSBs) have higher energy densities and are inherently safer than conventional lithium-ion Batteries (LiBs).
- > However, commercialisation of SSBs is hindered due to low ion mobility.
- > This is further complicated by the inability to measure lithium ion dynamics over a range of length scales, from one bond hops (nano-ionics) to macroscopic migrations through and across particles (macro-ionics).
- \succ Using a commercially relevant argyrodite (Li_{5.5}PS_{4.5}Cl_{1.5}) we have explored a magnetic resonance probe to determine ionic conductivity and adding spatial resolution by MRI.
- > Using this combined magnetic resonance approach the optimum hotpressing temperature was found to be 400 °C (673.1 K), as above this temperature the material degrades.

Motivation

> There is a dearth of analytical techniques capable of measuring ionic conductivity over different length scales.

- > Hot pressing is a potentially commercially scalable methodology for densifying SSBs.
- Li_{5.5}PS_{4.5}Cl_{1.5} argyrodite powders were pressed
- > Whilst under pressure the 3 mm pellets were heated to various temperatures (300-450 °C) forming densified pellets.

Methods – Measuring Dynamics over Varying Length Scales^{2,3}

Developing varying length scale diffusion NMR & MRI methods allows us to identify diffusion bottlenecks in SSBs.

Diffusion NMR

- \rightarrow Hot pressing to 400 °C increases both the *microscopic* (T_1 maxima) and *macroscopic ion* (PFG-NMR) *mobility*.
- > Above this temperature, the PFG-NMR determined diffusion coefficient decreases due to degradation of the $Li_{5.5}PS_{4.5}CI_{1.5}$.

400 °C = lowest temperature maximum

Microscopic Diffusion - ⁷Li T_1 -contrast MRI

- \succ Hot pressing increases the spin lattice relaxation (T_1) within the electrolyte. An increase in T_1 is indicative of improved *microscopic* ion mobility.
- \succ A more homogenous spread of T_1 relaxation times when hot pressing. This shows that not only increased microscopic lithium ion mobility when hot-pressed to 400 °C but also more evenly distributed mobility.

- > Focused ion beam-scanning electron microscope (FIB-SEM) demonstrates that hot pressing increases the density of the argyrodite.
- > Powder X-ray diffraction (XRD) suggests that the chemical structure of the pellet is not being compromised by hot pressing up to 400 °C.
- \geq Small amounts (~2 %) of LiCl and Li₂S are present in all the electrolytes, including the cold pressed and are therefore not caused by hot-pressing.

Macroscopic Diffusion - ⁷Li diffusion-contrast MRI

- > For the first time, diffusion-contrast MRI was used to give spatial information and macroscopic ion mobility.
- > The hot-pressed pellet (350 °C) shows there is a range of macroscopic diffusion coefficients.
- \succ The maximum diffusion (8x10⁻¹² m²s⁻¹) is x2.5 greater than the average diffusion coefficient (3x10⁻¹² m²s⁻¹). This suggests that further densification can give an increase in *macroscopic* ion mobility.

Bulk Diffusion Measurement =

Impact / Next steps

- > Novel diffusion-contrast MRI experiments were completed on solid state materials.
- > This is a viable technique for gaining spatial diffusion information with macroscopic diffusion contrast.
- > The results showed that hot pressing samples increases ion mobility at both microscopic and macroscopic length scales.
- \succ Hot pressing at 400 °C gives the maximum increase in ion mobility without changing the microstructure or chemical structure.
- > Future work will include optimization of diffusion-contrast MRI, the hot-pressing procedure, and testing full cell performance.

References

- 1. J. Janek and W. G. Zeier, *Nat Energy*, 2023.
- 2. M. Uitz, V. Epp, P. Bottke and M. Wilkening, J Electroceram, 2017, 38, 142-156.
- 3. K. S. Han, J. D. Bazak, Y. Chen, T. R. Graham, N. M. Washton, J. Z. Hu, V. Murugesan and K. T. Mueller, *Chemistry of* Materials, 2021, 33, 8562–8590.

Intern Bio

Alice is a third year MSci student at Imperial College, London studying Chemistry. After graduating she hopes to pursue a DPhil in battery research and development.

OxfordMaterials

