MOLECULAR DYNAMICS SIMULATIONS OF NOVEL SODIUM BORATE ELECTROLYTES

Performing molecular dynamics simulations to analyze and optimize conductivity for various sodium borate electrolyte salts

Luke Rasmussen, Sam Niblett, Clare Grey

Abstract

- Sodium-ion batteries are a promising alternative to lithium-ion batteries. However, commonly used sodium-ion battery electrolytes have drawbacks.
- Newly synthesized borate anions have performed well in electrochemical studies, and offer a number of attractive features as electrolyte salts [1].
- This project involved performing molecular dynamics simulations of three sodium borate electrolyte salts in order to analyze and explain their performance, and compare with experimental findings.

Methods

- NPT and NVT molecular dynamics simulations were run using LAMMPS for three different electrolyte salts of varying concentrations, resulting in the generation of trajectory files.
- Python scripts were written to analyze these trajectory files and calculate useful quantities, e.g. diffusion coefficients, viscosities, RDFs, residence time functions.

$$D_i = \lim_{t \to \infty} \frac{1}{6t} \left\langle \frac{1}{N_i} \sum_i \left(\mathbf{x}_i(t) - \mathbf{x}_i(0) \right)^2 \right\rangle$$

Einstein relation for determining diffusion coefficients

$$\eta = \frac{V}{k_{\rm B}T} \int_0^\infty \langle P_{\alpha\beta}(t) \cdot P_{\alpha\beta}(0) \rangle \, \mathrm{d}t$$

Green-Kubo relation for determining viscosity

Significant findings: If ion pairing doesn't determine diffusion coefficient, then what does?

	D _{NA} (sim)	D _{NA} (exp)	D _B (sim)	D _B (exp)
Salt 1a (0.5M)	2.95	3.78	2.87	3.17
Salt 1b (0.1M)	4.51	4.57	4.51	3.76
Salt 1b (0.5M)	1.57	4.29	1.57	2.49
Salt 1f (0.5M)	0.50		0.56	1.59

Table showing diffusion coefficients for Na and B atoms, comparing values from simulations and experimental results

- From the table above, simulated trends generally agree with experimental data and follow expected physics.
- However, from the shapes and peak heights of the graphs below, salts 1b and 1f exhibit similar ion pairing to each other, but different to 1a.
- It is often assumed that ion pairing determines diffusion coefficient, but results from this project suggest otherwise: Salts 1a and 1b have similar diffusion coefficients, but very different ion pairing, while Salt 1b and 1f have similar ion pairing and different diffusion coefficients.

Salt 1b, 0.5M

Diffusion mechanisms for sodium borate salts:

- An established protocol was applied to the borate salt simulations to answer the following question: "What is the main mode of diffusion between sodium ions and EC and DEC solvent molecules in the salts?" [2]
- Protocol involves calculating the characteristic diffusional length between two species and comparing the value to the radius of the solvation shell
- Results show that the main mode of diffusion between sodium ions and solvent molecules in salts 1a, 1b, and 1f was vehicular diffusion.

$$L_{ij}^{\rm c} = \sqrt{6D_i \tau_{ij}^{\rm res}}$$

Characteristic diffusional length scale, calculated from diffusion

 $L_{ij}^{c} > L^{S}$ vehicular motion $L_{ij}^{c} < L^{S}$ structural diffusion

Next steps

Salt 1a, 0.5M

- Increase the complexity of computational simulations to more accurately reflect the real system, e.g. by including DME cosolvent molecules in the simulations of salt 1a
- Calculate more physical quantities, such as conductivity and transference number, in order to get a more complete picture of electrolyte performance.

Radial distribution graph for Na and B atoms in Salt 1f, 0.5M

References

[1] Ould D.M.C. et al. "Sodium Borates: Expanding the Electrolyte Selection for Sodium-Ion Batteries", *Angewandte Chemie International Edition*, Volume
61, Issue 32, August 8 2022
[2] Self J. et al. "Transport in Superconcentrated LiPF₆ and LiBF₄/Propylene Carbonate Electrolytes", *ACS Energy*, 2019, 4, 2843–2849

coefficient and residence time

Different diffusion mechanisms between two species in a system

Intern bio

Luke is studying BSc Mathematics and Physics at University College London.

He completed his FUSE Internship with the Grey Group at the University of Cambridge.

