# **OPTIMISING Li, S FORMATION:** PROGRESS IN LITHIUM-SULFUR CATHODE DESIGN

The effect of heteroatomic doping in anode-free Li-S cells

## Nathan Njoku, Thomas Miller, Roby Soni

### **1. Project Introduction**

Lithium-sulfur (Li-S) technology offers high energy density, but experiences material loss and activation issues [1]. This project looks at *in-situ* Li<sub>2</sub>S conversion inside pores of nitrogen-doped 3D graphene: nano-size Li<sub>2</sub>S lowers activation barriers, whilst N-heteroatoms counter the shuttle effect, enhancing cycle life for energy storage applications.

<u>Li-S cell chemistry</u>:  $S_8 + 16Li^+ + 16e^- \rightleftharpoons 8Li_2S$ 

Operating at 1.7-2.8 V

Activation Voltage: 4 V [2]

Stages: 
$$S_8 + 2Li \rightleftharpoons Li_2S_8 \rightleftharpoons Li_2S_6 \rightleftharpoons Li_2S_4 \rightleftharpoons Li_2S_3 \rightleftharpoons Li_2S_2 \rightleftharpoons Li_2S$$

Conversion Issue: Shuttle Effect Soluble polysulfides can move across separator, causing active material loss

Solution: Polysulfide Trapping Immobilisation of polysulfides through electrostatic interactions (using B, N, P, S)



**Carbon Current Collector** Figure 1: Schematic of a discharging Li-S coin cell

#### **Negative Electrode**

- Copper: cheap, light-weight and conductive
- Anode-free: no excess Li or active materials, for increased safety and energy density

#### **Positive Electrode**

- Sulfur: light-weight, high capacity (1675 mAh g<sup>-1</sup>) active material for Li reaction
- Graphene: conductive host material for sulfur
- Binder: for holding electrode materials together

| 2. Method – Coin Cell Fabrication |                                |                            |                            |        |                   | 3. Evidence of <i>in-situ</i> Conversion |        |                                     |  |  |
|-----------------------------------|--------------------------------|----------------------------|----------------------------|--------|-------------------|------------------------------------------|--------|-------------------------------------|--|--|
| Carbon                            | Doping + 3D Stacking           | Melt Infusion              | Reduction                  | 2500 - | Before activation | • 14                                     |        | Before: very high                   |  |  |
| O Heteroatom                      | In-situ solvothermal synthesis | Graphene + Sulfur in 40:60 | S converted to (nanoscale) | -      |                   | • 12 -                                   |        | impedance due to                    |  |  |
|                                   | (180°C, high-pressure) [3]     | ratio (155°C, 16 hours)    | Li₂S using Li(Et)₃BH       | 2000 - | •                 | 10 -                                     | e<br>e | poor Li <sub>2</sub> S conductivity |  |  |





Figure 5: Image showing copper current collector with white coating

### 4. Results – Material Performance and Characterisation

**Assembly:** Cathode and Cu collector wetted in 1 M LiTFSI + 1 M LiNO<sub>3</sub> electrolyte

### N-Gr/Li<sub>2</sub>S PERFORMANCE WITH LITHIUM HALF CELL

**Testing:** Compared against micron-scale C65/Li<sub>2</sub>S control



### Capacity

- Higher capacity achieved by N-Gr/Li<sub>2</sub>S
- $\rightarrow$  Nano-sized Li<sub>2</sub>S is utilised better
- N-Gr/Li<sub>2</sub>S shows less capacity loss than commercial Li<sub>2</sub>S (10% vs. 26%)
- Better stability in N-Gr attributed to reduced polysulfide shuttling

### Efficiency

Similar average efficiency (99% for control vs. 98.4% N-Gr)

Figure 6: Discharging Capacity and Efficiency graphs for commercial Li<sub>2</sub>S/C65 cell and for N-doped graphene cell (C5)



N-Gr/Li<sub>2</sub>S shows lower overpotential for activation  $\rightarrow$  Nano-sized Li<sub>2</sub>S provides large surface area and reduces Li-ion diffusion distance, aiding activation [2]



Capacity

- N-Gr/Li<sub>2</sub>S shows higher capacity (580 mAh g<sup>-1</sup> vs. 420 mAh g<sup>-1</sup>)

### N-Gr/Li<sub>2</sub>S PERFORMANCE IN ANODE-FREE SYSTEM



**First Discharge** 

- Liquid to Solid conversion: smaller barrier for transition is observed for N-Gr/Li<sub>2</sub>S (0.01 V vs 0.04 V)
- → Increased surface area and catalytic properties of nanoparticles improve reaction kinetics



THE FARADAY

INST

TUTION

NEXT GENERATION LITHIUM SULFUR BATTERIES



N-Graphene

N-Gr retains higher capacity than commercial Li<sub>2</sub>S after 20 cycles

### Efficiency

N-Gr initially lower, but efficiencies both end steady around 94%

**Figure 7:** Activation (voltage vs capacity) graphs for Li<sub>2</sub>S/C65 cell and for N-doped graphene cell

Figure 9: Discharging Capacity and Efficiency graphs for anode-free Li<sub>2</sub>S/C65 and N-doped graphene cells (C5)

| 6. Project Aims                                | Conclusions                                                                                                                                            | 7. Next Steps – Further Testing                                                                                                                                                                                                                                                                                                                                                  | Intern bio                                                                                        |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Li <sub>2</sub> S optimisation                 | <ul> <li>Successful <i>in-situ</i> synthesis<br/>(seen from EIS and deposition imaging)</li> </ul>                                                     | → Different Dopants + Amounts: (e.g. Boron & Phosphorus) to<br>further study the process of polysulfide immobilisation                                                                                                                                                                                                                                                           | Nathan is in the 2 <sup>nd</sup> year of his Chemistry                                            |  |  |
|                                                | <ul> <li>✓ Nanoparticles functioning in structure<br/>(Lower activation overpotential)</li> </ul>                                                      | → Material Development: Modifying Cu collector to improve Li deposition and Cycling Efficiency                                                                                                                                                                                                                                                                                   | completed this research project whilst at<br>UCL, within the Department of Chemical               |  |  |
| Heteroatom Doping<br>(novel material synthesis | <ul> <li>Support for Polysulfide Trapping seen<br/>(Improved Cycling- 90% Capacity retention</li> </ul>                                                | → Industrial Viability: Progressing to pouch cell development,<br>with additional safety testing and Life Cycle Assessment                                                                                                                                                                                                                                                       | Engineering.<br>He is interested in sustainable technologies                                      |  |  |
| + characterisation)                            | after 50 cycles)                                                                                                                                       | References                                                                                                                                                                                                                                                                                                                                                                       | particularly MOF carbon capture and battery                                                       |  |  |
| Cell Fabrication                               | <ul> <li>Over 05% Enclency<br/>(Maintained over 20 cycles despite uneven<br/>Li deposition)</li> </ul>                                                 | <ul> <li>[1] M.R. Kaiser et al, "Lithium sulfide-based cathode for lithium-ion/sulfur battery: Recent progress and challenges". <i>Energy Storage Materials</i>. 2019; vol 19: pp 1-15.</li> <li>[2] H. Ye et al, "Activating Li2S as the lithium-containing cathode in lithium–sulfur batteries". <i>ACS</i></li> </ul>                                                         | energy storage. Looking to the future, he<br>intends to contribute to research in these<br>fields |  |  |
| Progression of Li-S<br>batteries               | <ul> <li>Promising developments for future use<br/>Potential use in Transportation, Portable<br/>Electronic &amp; Energy Storage industries</li> </ul> | <ul> <li>Energy Lett. 2020; vol 5: pp 2234-45.</li> <li>[3] N. Manna et al, "A NiFe layered double hydroxide-decorated N-doped entangled-graphene framework: a robust water oxidation electrocatalyst". Nanoscale Advances. 2020; vol 2: pp 1709-1717.</li> <li>[4] X. Ji et al, "Advances in Li-S batteries". Journal of Materials Chemistry. 2010; vol 20: pp 9821-</li> </ul> | LinkedIn: Visit Nathan Njoku's Pag                                                                |  |  |

Disch



