MECHANOFUSION FOR NEXT-GENERATION LITHIUM-ION BATTERY CATHODE MANUFACTURING

Correlating mechanofusion process parameters to CB deagglomeration behaviour through C65-coated NMC622 electronic conductivity

Prateek Verma¹, Guo J Lian², Rachel Smith^{2,3}, Denis Cumming^{2,3}

¹School of Chemical and Process Engineering, The University of Leeds, Woodhouse, Leeds, LS2 9JT ² Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD ³ The Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot, OX11 ORA

ABSTRACT

MOTIVATION

CONCLUSIONS

- C65 successfully deagglomerated and coated onto NMC622 via mechanofusion
- Deagglomeration of C65 with respect to varying process parameters evaluated using powder resistivity
- Determined percolation threshold of particles

THE FARADAY

ELECTRODE MANUFACTURING

NEXT STEPS

- Identifying advanced characterisation methods to quantify CB deagglomeration (e.g. tap density measurement)
- Relating dry mixing with CB deagglomeration through dimensionless numbers
- Electrochemical testing of coated particles

REFERENCES

[1] Westphal, B.G. et al. Journal of Energy Storage. **11**(2017) 76 – 85. [2] Verdier, N. et al. Polymers **13**(2021) 323

[3] Zheng, L. et al. MRS Communications 1(2018)

INTERN BIO

Prateek is a 3rd year student of Chemical Engineering at The University of Leeds. He interested in solutions which are aiding global energy transition.

http://www.linkedin.com/in/prateekverma-88924b1a8

2

