IMPROVING BATTERY MODELS USING UNCERTAINTY ANALYSIS

Estimating experimental error and investigating propagation in models.

Siddhi Barhanpurkar, Edmund J. F. Dickinson

1. ABSTRACT

Battery models are increasingly desirable for automotive companies, motorsport and cell manufacturers to **design** control systems based on a particular cell. Models are as reliable as their input parameters, which are obtained from physical measurements made by tearing down a cell. Quantifying the uncertainty in these measurements and propagating through the model has a threefold impact:

- The reported data is more **trustworthy** for the customer.
- The level of uncertainty may **affect** 2) decisions such as amount of billing materials or manufacturing route used. The sources of **uncertainty in the** measurement method are identified and the method can be improved.

2. UNCERTAINTY BUDGETING Uncertainty is the **quantification of doubt** in a measurement¹. Source Expanded **Distribution** uncertainty **x**2 Standard Divisor uncertainty [†] For a normal Sensitivity distribution The expanded uncertainty is quoted to 95% confidence; there is **a 95%**

3. TEARDOWN PROCESS

within this interval.

Picture credit: About: Energy Ltd.

4. SOURCES OF UNCERTAINTY

= assumed resolved during calibration

Uncertainty analysis **assumes perfect operation**² (impossible!) but can be reduced by methodology improvement such as **regular calibration** or using a concrete table to minimise vibrations.

Follow along with

my website! Look

for the magnifying

glass symbol on the

poster.

The equation for **porosity,** ε, is shown on the right. *m*_{Coat} is the mass loading of

6. EQUATIONS

5. MONTE CARLO METHOD

The **standard (not expanded) uncertainty** of mass loading and thickness found in the gravimetric budget was set to be the **standard deviation** of the input values.

7. CONCLUSIONS

the electrode layer.

 $ho_{
m tot}$ is the electrode **density** which is calculated from the active material mass fraction, W_{act}.

 W_{act} depends on capacity which is inversely proportional to mass loading. Hence, **porosity is** a complex function of mass loading, and would be tricky to solve analytically.

8. IMPACT / NEXT STEPS

- In both figures the mean of B is greater than the mean of A. However, the conclusion that B > A cannot be drawn for (1) due to **significant overlap**.
- Hence, uncertainty analysis enables quantitative **comparison** between measurements under different conditions.

Future steps:

a

Electrochemical measurement uncertainties

2 Uncertainty in sticking to the separator and (B) active material flaking off as a powder and hence, being lost.

Uncertainty tool embedded in spreadsheet:

0.27 0.275 0.28 0.285 0.29 0.295 0.3 0.305 0.31 0.315 0.32

Sample coated on a single	Diameter /	Mass /	Thickness /	Coat thickess /	Coat mass /	Mass loading /
side	cm	mg	μm	μm	mg	mg cm ⁻²
Average	1.8	52.420	9.25E+01	84.490	34.28	13.471
Uncertainty 95% confidence	5.40E-03	0.117	3.51E-03	0.005	1.48E-01	0.082

REFERENCES

- (1) Bell, S. (2001) 'A Beginner's Guide to Uncertainty of Measurement', Measurement Good Practice Guide No. 11 (Issue 2), Teddington: National Physical Laboratory.
- (2) Davidson, S., Perkin, M., Buckley, M. (2004) 'The Measurement of Mass and Weight', Measurement Good Practice Guide No. 71, Teddington: National Physical Laboratory.

INTERN BIO

Siddhi is a 3rd year Materials Science student at the University of Cambridge. She hopes to pursue a PhD in the battery sector and transition to industry to make a positive, sustainable impact! She would love to establish a start-up in the future within the energy storage industry.

Improve

equipment +

setup

