Identifying the unique risks posed by Thermal **Runaway of LIBs in Marine Applications**

A Qualitative Risk Assessment of the Hazards in Maritime BESS

Simran Khanna, Peter Bugryniec, Solomon Brown

Abstract

The International Marine Organisation (IMO) states that 2.6% of global emissions are released from ships¹ causing a rise in electric marine vessels over the last 20 years, with the greatest adoption in hybrid ferries due to shorter travel times². Currently, Li-NMC batteries are a popular option for electric propulsion due to their high specific energy, reduction in fuel consumption and greenhouse gas emissions, as well as improving ship responsiveness and operational performance². However, there are huge drawbacks in **thermal runaway(TR)** issues of the batteries due to large energy demands, which lead to fires, explosions and thermal propagation to adjacent rooms onboard.

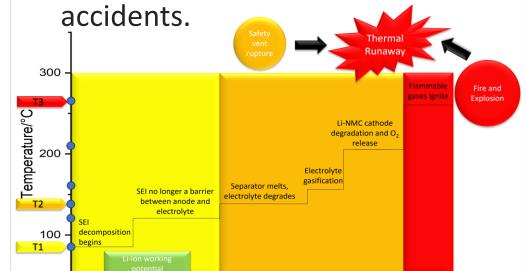
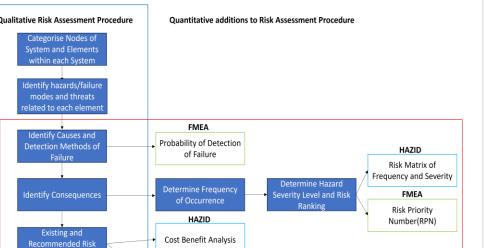


Figure 1: a) The world's first fully electric car ferry, MF Ampere³ b) MS Brim after a TR catastrophe⁴.


Motivation

- TR occurs by: Mechanical, **Thermal and Electrical** Abuse(most common), causing a series of exothermic reactions and an internal short-circuit(ISC).
- This can have catastrophic effects → evident in a history of marine

Methods

- Qualitative risk assessment conducted using Hazard Identification(HAZID) and Failure Modes and Effects Analysis(FMEA).
- Presented in a Bow-Tie Diagram to show threats, barriers, safety measures and consequences.

Challenges in the Marine Environment

- Accidents such as MF Ytteroyningen and **MS Brim** show important risks such as electrical abuse of thermally/cyclically unstable cells by overcharging, lack of smooth **BMS interface**, **BMS coolant** leakage and gas accumulation due to the dichotomous issue of closed-space fire extinguishing(e.g. with gaseous NOVEC 1230) to prevent fire propagation, but also simultaneous ventilation of gases to prevent explosion⁵.
- Marine batteries show differences to EV and other ESS such as the power needed to support largely fluctuating ship load profiles⁶, seawater/salt air ingression(causing ISC), larger scale battery space extinguishing/cooling and ventilation, and complicated emergenc response procedures i.e. need for trained maritime firefighters⁵ and difficulty of evacuation of the vessel.

Recommendations

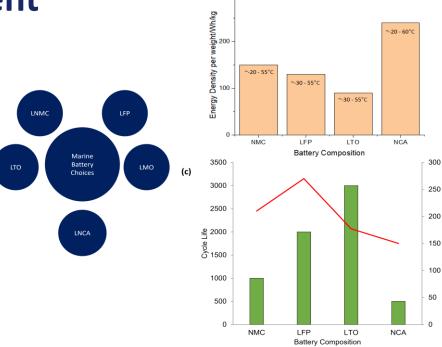


Figure 4: a)Battery compositions used in the marine industry b)energy densities and discharging temperatures c) cycle life and TR onset temperatures⁷.

Cause Prevention	TR Propagation Prevention	Gas Spread Prevention
Improvement on watertight nature of room and doors.	Fire-extinguishing capacity of fresh-water based systems increased from 30 →60mins.	Room and ducts should be gas tight.
Stricter requirements on ventilation ducts and environmental protection of the room.	No requirement for sea-water extinguishing system.	Inlet duct directly from open air and outlet for integrated duct directly to open air.
Minimum of IP44 rating for ingress protection.	Option for combined gas and water spray system for 30mins.	No direct access from public space.
Leakage detection systems.	No requirement for gas system cooling.	3m toxic zones around outlets(no access to any spaces)

Figure 5: TR, fire, explosion and thermal propagation prevention methods set out by the DNV(a marine vessel classification society) in the '1st International Symposium on fire in electric storage at sea⁵'.

References

¹⁰G. Hu, P. Huang, Z. Bai, Q. Wang, and K. Qi,

¹¹ S. Havman, "Final report on battery re-installation," (accessed: 2023-08-3)

pp. 95-131, 2019

100140. 11 2021

ww.un.org/en/climatechange/net-zero-coalitior

Mf ampere.", https://corvusenergy.com/projects/mf-ampere/(acce

Corvus Energy, "Ms brim,", https://corvusenergy.com/projects/brim-explorer/(accessed: 2023/08-30

osium on fire in electric storage at sea." (accessed: 2023/08-3

⁸O. Wang, B. Mao, S. I. Stoliarov, and J. Sun, "A review of lithium ion battery failure mechanisms and fire preve

¹⁵ DNV AS, "Part 6 additional class notations chapter 2 propulsion, power generation and auxiliary systems," 2023

¹⁶ N. F. P. A. (NFPA) et al.. "Nfpa 68: Standard on explosion protection by deflagration vent

nd T. Sun, "Safety challenges and safety measures of li-ion batteries," Energy Science and Engine

- The Battery System: Cell chemistry modification, cell/module configurations to limit propagation. Fire protection using **refractory/phase change materials**^{9,10}.
- **The Electronic Control System:** Efficient BMS temperature, voltage and SOC monitoring, with considerations of ISC detection algorithms⁸. DC-DC and active front end converters for better string integration and EMI reduction¹¹.
- The Battery Space: Location in the stern rather than collision bulkhead of a

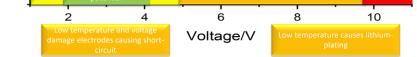


Figure 2: The steps to thermal runaway in a Li-NMC cell.

Figure 3: HAZID and FMEA Risk Assessment Flowchart.

Conclusions

- The Bow Tie Analysis below shows the causes, barriers to TR, hazard prevention strategies and consequences one of the three abuse conditions: Electrical Abuse in Maritime BESS, within 3 system nodes: The Battery System, The Electronic Control System and The Battery Space.
- The systems in a marine enclosure are very interdependent and the ambient marine environment can have unpredictable risks, making risk assessments with linear cause and effects redundant → more **holistic** analysis is needed.
- Essentially, we benefit from 'hindsight bias'¹⁷ as the only learning points for safety engineers are previous accidents.

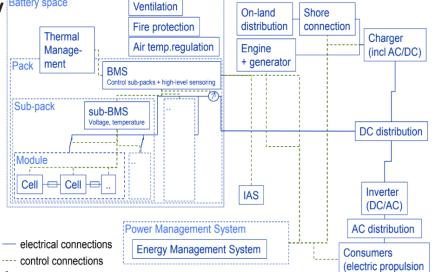
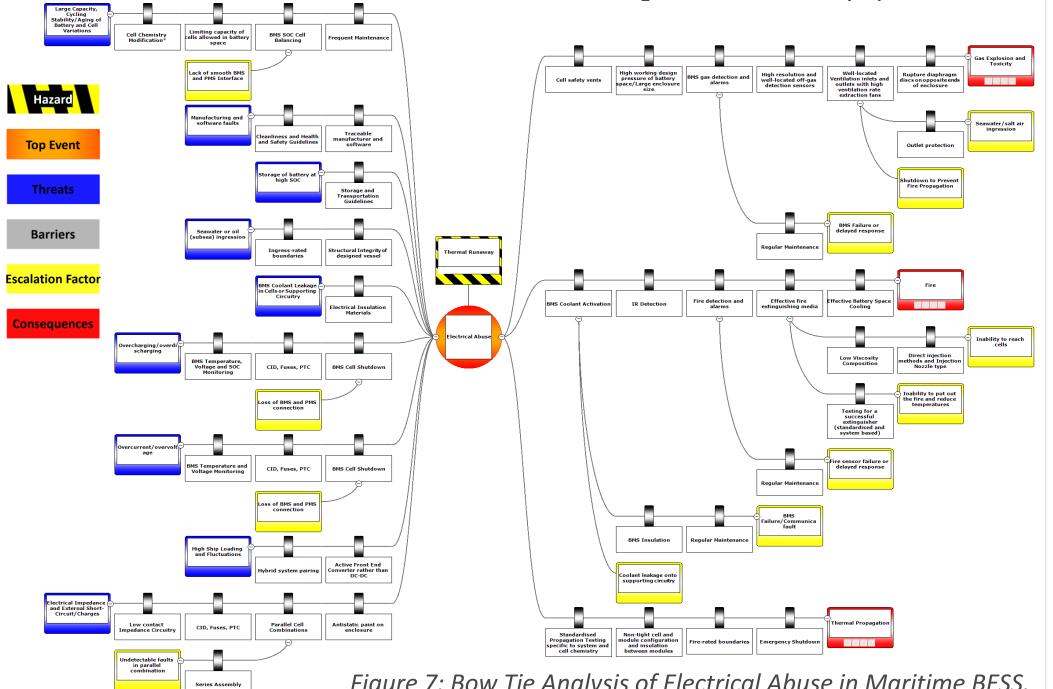



Figure 6: A schematic of Maritime BESS given by the DNV in the 'Guideline for Large Maritime Battery Systems^{8'}.

ship¹¹, with water ingress-rated(IP44)¹² and fire protected(A60) boundaries¹³. High-resolution off-gas and IR detectors allowing shutdown when 30% lower flammability limit(LFL) is reached¹⁴. Foam-based fire extinguishers e.g. FIFI4Marine CAFS using **direct injection methods**¹³, or dual combinations of gaseous and water-based(for final flooding operations). Ventilation ducts located \leq 0.4m from the ceiling with high air changes per hour(ACH) extraction fans¹⁵, and **rupture diaphragm discs** at opposite ends of the enclosure¹⁶.

Impact / Next steps for Commercialisation

- Early cell barriers need further research e.g. electrolyte additives for more stable SEI formation/flame retardance, **solid/ionic electrolytes** to inhibit lithium/copper dendrite growth, **anode and cathode** coatings to improve thermal/structural stability, and trilayer separators for higher collapse temperatures^{8,9,10}.
- Hazards are more easily managed if societies like the **DNV and Lloyd's Register** improve, standardize and integrate systems safely in the BESS e.g. by better BMS integrity, propagation tests on extinguishing media, vent sizes/positioning and sensors- which are dependent on the specific battery chemistry and capacity contained in the room.

Figure 7: Bow Tie Analysis of Electrical Abuse in Maritime BESS.

Intern bio

Simran Khanna is a 2nd year Materials Science and Engineering student at Imperial College London, interested in sustainable energy production and storage, and aspiring to join the movement towards Net-Zero. She completed her FUSE internship in the Sol Brown Group at the University of Sheffield.

