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Thin-Film Ni-Rich Cathode Materials for Li-lon Batteries s

Enabling adoption of sustainable energy via cathode material research and

development for high-performance Li-ion batteries

Willlam J. Metcalf, Farheen N. Sayed, Clare P. Grey
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, United Kingdom

Background of Research | Issues With NMCs? | |
= High-performance rechargeable Li-ion batteries could enable the NAAA = Electrode-electrolyte reactions and surface phase changes during battery

widespread use of more environmentally friendly electric vehicles charging/discharging cause capacity fading

= However, energy density and cycling stability need to be = Ni** reacts with organic electrolytes to form resistive surface compounds
Improved = Surface phase and anisotropic lattice volume changes create residual

= Qver the past decade, LiNij;sMn,,Co,,0, (NMC811) has been stresses causing polycrystalline material to crack which exposes

used as a cathode material for electric vehicles by Mercedes, additional surfaces to the electrolyte
Kia, Ford etc. = Thin-film NMC811 research can help us better understand surface

= This is due to its high specific capacity ~200 mAhg* and low degradation without the presence of carbon and binders found in
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content of costly Co structure [1] polycrystalline cathodes
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3 — Composition and thickness analysis using TEM 4 — Electrochemical performance of thin-film vs
= Lamella of thin-film samples were prepared using focused ion beam (Ga-FIB) = polycrystalline NMC811 Cycling Stability of Polycrystalline NMCB11
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Fig 7 — High resolution TEM and fast Fourier transforms (FFTs) of different regions of the films to check current (right)

the crystallinity and lattice plane orientation

= HR-TEM shows the SrRuO, layer to be highly orientated
= SrRuO, and O-rich deposition atmosphere also creates a more

= For calculating capacity, thickness values from TEM were used
= Thin-film shows reasonably good electrochemical profile with initial

orientated NMC811 (003) layer as seen in the FFTs discharge capacity being 121 mAhg* with 0.1uA current
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