A full list of publications to from the FutureCat project to October 2023 can be found here. 

  1. Evaluating lithium diffusion mechanisms in the complex spinel Li2NiGe3O8; Martin, D.Z.C.; Haworth, A.R.; Schmidt, W.L.; Baker, P.J.; Boston, R.; Johnston, K.E.; Reeves-Mclaren, N.; Physical Chemistry Chemical Physics (Oct 2019) https://doi.org/10.1039/c9cp02907a   
  2. Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials; McClelland, I.; Johnston, B.; Baker, P.J.; Amores, M.; Cussen, E.J.; Corr, S.A.; Annual Review of Materials Research (May 2020) https://doi.org/10.1146/annurev-matsci-110519-110507   
  3. Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries; Davies, D.W.; Morgan, B.J.; Scanlon, D.O.; Walsh, A.; IOP SciNotes (July 2020) https://doi.org/10.1088/2633-1357/ab9750  (See also CATMAT) 
  4. In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation; McClelland, I.; Booth, S.G.; El-Shinawi, H.; Johnston, B.I.J.; Clough, J.; Guo, W.; Cussen, E.J.; Baker, P.J.; Corr, S.A.; ACS Applied Energy Materials (Jan 2021) https://doi.org/10.1021/acsaem.0c02722  (See also SOLBAT) 
  5. Revisiting metal fluorides as lithium-ion battery cathodes; Hua, X.; Eggeman, A.S.; Castillo-Martínez, E.; Robert, R.; Geddes, H.S.; Lu, Z.; Pickard, C.J.; Meng, W.; Wiaderek, K.M.; Pereira, N.; Amatucci, G.G.; Midgley, P.A.; Chapman, K.W.; Steiner, U.; Goodwin, A.L.; Grey, C.P.; Nature Materials (Jan 2021) https://doi.org/10.1038/s41563-020-00893-1 (See also CATMAT) 
  6. Non-equilibrium metal oxides via reconversion chemistry in lithium-ion batteries; Hua, X.; Allan, P.K.; Gong, C.; Chater, P.A.; Schmidt, E.M.; Geddes, H.S.; Robertson, A.W.; Bruce, P.G.; Goodwin, A.L.; Nature Communications (Jan 2021) https://doi.org/10.1038/s41467-020-20736-6  
  7. Ab initio random structure searching for battery cathode materials; Lu, Z.; Zhu, B.; Shires, B.W.B.; Scanlon, D.O.; Pickard, C.J.; Journal of Chemical Physics (May 2021) https://doi.org/10.1063/5.0049309  
  8. Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks; Gittins, J.W.; Balhatchet, C.J.; Chen, Y.; Liu, C.; Madden, D.G.; Britto, S.; Golomb, M.J.; Walsh, A.; Fairen-Jimenez, D.; Dutton, S.E.; Forse, A.C.; Journal of Materials Chemistry A (June 2021) https://doi.org/10.1039/d1ta04026j  
  9. Extracting interface correlations from the pair distribution function of composite materials; Geddes, H.S.; Hutchinson, H.D.; Ha, A.R.; Funnell, N.P.; Goodwin, A.L.; Nanoscale (July 2021) https://doi.org/10.1039/D1NR01922H  
  10. Common workflows for computing material properties using different quantum engines; Huber, S.P.; Bosoni, E.; Bercx, M.; Bröder, J.; Degomme, A.; Dikan, V.; Eimre, K.; Flage-Larsen, E.; Garcia, A.; Genovese, L.; Gresch, D.; Johnston, C.; Petretto, G.; Poncé, S.; Rignanese, G.-M.; Sewell, C.J.; Smit, B.; Tseplyaev, V.; Uhrin, M.; Wortmann, D.; Yakutovich, A.V.; Zadoks, A.; Zarabadi-Poor, P.; Zhu, B.; Marzari, N.; Pizzi, G.; npj Computational Materials (Aug 2021) https://doi.org/10.1038/s41524-021-00594-6  
  11. Reliable protocols for calculating the specific energy and energy density of Li-Ion batteries; Son, Y.; Cha, H.; Jo, C.; Groombridge, A.S.; Lee, T.; Boies, A.; Cho, J.; De Volder, M.; Materials Today Energy (Sept 2021) https://doi.org/10.1016/j.mtener.2021.100838  
  12. Lithiation phase behaviors of metal oxide anodes and extra capacities; Hua, X.; Allan, P.K.; Geddes, H.S.; Castillo-Martínez, E.; Chater, P.A.; Dean, T.S.; Minelli, A.; Bruce, P.G.; Goodwin, A.L.; Cell Reports Physical Science (Sept 2021) https://doi.org/10.1016/j.xcrp.2021.100543  
  13. A Perspective on the Sustainability of Cathode Materials used in Lithium-Ion Batteries; Murdock, B.E.; Toghill, K.E.; Tapia-Ruiz, N.; Advanced Energy Materials (Sept 2021) https://doi.org/10.1002/aenm.202102028  
  14. Ion dynamics in fluoride-containing polyatomic anion cathodes by muon spectroscopy; Johnston, B.I.J.; Baker, P.J.; Cussen, S.A.; JPhys Materials (Sept 2021) https://doi.org/10.1088/2515-7639/ac22ba (See also NexGenNa) 
  15. Recovering local structure information from high-pressure total scattering experiments; Herlihy, A.; Geddes, H.S.; Sosso, G.C.; Bull, C.L.; Ridley, C.J.; Goodwin, A.L.; Senn, M.S.; Funnell, N.P.; Journal of Applied Crystallography (Sept 2021) https://doi.org/10.1107/S1600576721009420  
  16. Perspectives for next generation lithium-ion battery cathode materials; Booth, S.G.; Nedoma, A.J.; Anthonisamy, N.N.; Baker, P.J.; Boston, R.; Bronstein, H.; Clarke, S.J.; Cussen, E.J.; Daramalla, V.; De Volder, M.; Dutton, S.E.; Falkowski, V.; Fleck, N.A.; Geddes, H.S.; Gollapally, N.; Goodwin, A.L.; Griffin, J.M.; Haworth, A.R.; Hayward, M.A.; Hull, S.; Inkson, B.J.; Johnston, B.J.; Lu, Z.; MacManus-Driscoll, J.L.; Martínez De Irujo Labalde, X.; McClelland, I.; McCombie, K.; Murdock, B.; Nayak, D.; Park, S.; Pérez, G.E.; Pickard, C.J.; Piper, L.F.J.; Playford, H.Y.; Price, S.; Scanlon, D.O.; Stallard, J.C.; Tapia-Ruiz, N.; West, A.R.; Wheatcroft, L.; Wilson, M.; Zhang, L.; Zhi, X.; Zhu, B.; Cussen, S.A.; APL Materials (Oct 2021) https://doi.org/10.1063/5.0051092  
  17. Accelerating cathode material discovery through ab initio random structure searching; Zhu, B.; Lu, Z.; Pickard, C.J.; Scanlon, D.O.; APL Materials (Dec 2021) https://doi.org/10.1063/5.0076220  
  18. Identifying Hidden Li–Si–O Phases for Lithium-Ion Batteries via First-Principle Thermodynamic Calculations; Qu, J.; Ning, C.; Feng, X.; Yao, B.; Liu, B.; Lu, Z.; Wang, T.; Seh, Z.W.; Shi, S.; Zhang, Q.; Energy and Environmental Materials (Dec 2021) https://doi.org/10.1002/eem2.12329  
  19. A compliant and low-expansion 2-phase micro-architectured material, with potential application to solid-state Li-ion batteries; Zhao, Y.; Deshpande, V.S.; Fleck, N.A.; Journal of the Mechanics and Physics of Solids (Jan 2022) https://doi.org/10.1016/j.jmps.2021.104683  (See also SOLBAT) 
  20. Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid-state electrolyte; Liu, B.; Hu, Q.; Gao, T.; Liao, P.; Wen, Y.; Lu, Z.; Yang, J.; Shi, S.; Zhang, W.; Journal of Materiomics (Jan 2022) https://doi.org/10.1016/j.jmat.2021.05.006   
  21. Predicting Lithium Iron Oxysulfides for Battery Cathodes; Zhu, B.; Scanlon, D.O.; ACS Applied Energy Materials (Jan 2022) https://doi.org/10.1021/acsaem.1c03094  
  22. Conversion of Li2FeSbO5to the Fe(III)/Fe(V) Phase LiFeSbO5via Topochemical Lithium Extraction; Martínez De Irujo-Labalde, X.; Scrimshire, A.; Bingham, P.A.; Suard, E.; Hayward, M.A.; Chemistry of Materials (Feb 2022) https://doi.org/10.1021/acs.chemmater.2c00156  
  23. Pressure Tuning the Jahn-Teller Transition Temperature in NaNiO2; Nagle-Cocco, L.A.V.; Bull, C.L.; Ridley, C.J.; Dutton, S.E.; Inorganic Chemistry (March 2022) https://doi.org/10.1021/acs.inorgchem.1c03345  
  24. Mechanical properties of cathode materials for lithium-ion batteries; Stallard, J.C.; Wheatcroft, L.; Booth, S.G.; Boston, R.; Corr, S.A.; De Volder, M.F.L.; Inkson, B.J.; Fleck, N.A.; Joule (April 2022) https://doi.org/10.1016/j.joule.2022.04.001  
  25. Effect of Lithiation upon the Shear Strength of NMC811 Single Crystals; Stallard, J.C.; Vema, S.; Hall, D.S.; Dennis, A.R.; Penrod, M.E.; Grey, C.P.; Deshpande, V.S.; Fleck, N.A.; Journal of the Electrochemical Society (April 2022) https://doi.org/10.1149/1945-7111/ac6244 (See also Degradation)  
  26. Lithium-based vertically aligned nancomposite films incorporating LixLa0.32(Nb0.7Ti0.32)O3electrolyte with high Li+ion conductivity; Lovett, A.J.; Kursumovic, A.; Dutton, S.; Qi, Z.; He, Z.; Wang, H.; MacManus-Driscoll, J.L.; APL Materials (May 2022) https://doi.org/10.1063/5.0086844  
  27. Low-voltage SEM of air-sensitive powders: From sample preparation to micro/nano analysis with secondary electron hyperspectral imaging; Nohl, J.F.; Farr, N.T.H.; Sun, Y.; Hughes, G.M.; Cussen, S.A.; Rodenburg, C.; Micron (May 2022) https://doi.org/10.1016/j.micron.2022.103234  (See also Nextrode) 
  28. Misreported non-aqueous reference potentials: The battery research endemic; Murdock, B.E.; Armstrong, C.G.; Smith, D.E.; Tapia-Ruiz, N.; Toghill, K.E.; Joule (May 2022) https://doi.org/10.1016/j.joule.2022.04.009   
  29. Surface reduction in lithium- and manganese-rich layered cathodes for lithium ion batteries drives voltage decay; Wen, B.; Sayed, F.N.; Dose, W.M.; Morzy, J.K.; Son, Y.; Nagendran, S.; Ducati, C.; Grey, C.P.; De Volder, M.F.L.; Journal of Materials Chemistry A (Sept 2022) https://doi.org/10.1039/D2TA04876K (See also CATMAT, Degradation) 
  30. Cathodes for Mg batteries: A condensed review; Pryke, J.J.; Kennard, R.M.; Cussen, S.A.; Energy Reports (Nov 2022) https://doi.org/10.1016/j.egyr.2022.07.124 (See also FutureCat) 
  31. Co-precipitation synthesis of nickel-rich cathodes for Li-ion batteries; Entwistle, T.; Sanchez-Perez, E.; Murray, G.J.; Anthonisamy, N.; Cussen, S.A.; Energy Reports (Nov 2022) https://doi.org/10.1016/j.egyr.2022.06.110   
  32. Roadmap on Li-ion battery manufacturing research; Grant, P.S.; Greenwood, D.; Pardikar, K.; Smith, R.; Entwistle, T.; Middlemiss, L.A.; Murray, G.; Cussen, S.A.; Lain, M.J.; Capener, M.J.; Copley, M.; Reynolds, C.D.; Hare, S.D.; Simmons, M.J.H.; Kendrick, E.; Zankowski, S.P.; Wheeler, S.; Zhu, P.; Slater, P.R.; Zhang, Y.S.; Morrison, A.R.T.; Dawson, W.; Li, J.; Shearing, P.R.; Brett, D.J.L.; Matthews, G.; Ge, R.; Drummond, R.; Tredenick, E.C.; Cheng, C.; Duncan, S.R.; Boyce, A.M.; Faraji-Niri, M.; Marco, J.; Roman-Ramirez, L.A.; Harper, C.; Blackmore, P.; Shelley, T.; Mohsseni, A.; Cumming, D.J.; JPhys Energy (Nov 2022) https://doi.org/10.1088/2515-7655/ac8e30 (See also Nextrode) 
  33. Solid-state NMR studies of coatings and interfaces in batteries; Haworth, A.R.; Cook, C.W.; Griffin, J.M.; Current Opinion in Colloid and Interface Science (Dec 2022) https://doi.org/10.1016/j.cocis.2022.101638  
  34. Suppression of Fe-Cation Migration by Indium Substitution in LiFe2-xInxSbO6 Cathode Materials; Martínez de Irujo Labalde, X.; Grievson, H.; Mortimer, J.-M.; Booth, S.G.; Scrimshire, A.; Bingham, P.A.; Suard, E.; Cussen, S.A.; Hayward, M.A.; Chemistry of Materials (Dec 2022) https://doi.org/10.1021/acs.chemmater.2c03418  
  35. Oxygen-redox activity in non-Li-excess W-doped LiNiO2; Menon, A.S.; Johnston, B.J.; Booth, S.G.;Zhang,L.;Kress, K.; Murdock,B.E.;Paez Farjardo, G.; Anthonisamy, N.N.; Tapia-Ruiz, N.; Agrestini, S.; Garcia-Fernandez,M.; Zhou,K.; Thakur, P.K.; Lee, T.L.; Nedoma, A.J.; Cussen, S.A.; Piper, L.F.J.; PRX Energy (March 2023) https://doi.org/10.1103/PRXEnergy.2.013005  (See also Degradation) 
  36. Fracture Testing of Li-ion Battery Cathode Secondary Particles In-situ inside the Scanning Electron Microscope; Wheatcroft, L.; Bird, A.; Stallard, J.C.;Mitchell, R.L; Booth, S.G.; Nedoma, A.J.; De Volder, M.F. L.; Cussen, S.A.;Fleck, N.A.; Inkson, B.I.; Batteries and Supercaps (March 2023) https://doi.org/10.1002/batt.202300032  
  37. Neutron and muon characterisation techniques for battery materials; Pérez, G.E.; Brittain, J.M.; McClelland, I.; Hull, S.; Jones, M.O.; Playford, H.Y.; Cussen, S.A.; Baker, P.J.; Reynolds, E.M.; Journal of Materials Chemistry A (March 2023) https://doi.org/10.1039/D2TA07235A  (See also NexGenNa) 
  38. Cation disorder dominates the defect chemistry of high-voltage LiMn1.5Ni0.5O4 (LMNO) spinel cathodes; Cen, J.; Zhu, B.; Kavanagh, S.R.; Squires, A.G.; Scanlon, D.O.; Journal of Materials Chemistry A (April 2023) https://doi.org/10.1039/D3TA00532A  
  39. Direct Observation of Dynamic Lithium Diffusion Behavior in Nickel-Rich, LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes Using Operando Muon Spectroscopy; McClelland, I.; Booth, S.G.; Anthonisamy, N.N.; Middlemiss, L.A.; Pérez, G.E.; Cussen, E.J.; Baker, P.J.; Cussen, S.A.; Chemistry of Materials (May 2023) https://doi.org/10.1021/acs.chemmater.2c03834  (See also Degradation, Nextrode) 
  40. Exploring battery cathode materials in the Li-Ni-O phase diagrams using structure prediction; Cen, J.; Zhu, B.; Scanlon, D.O.; JPhys Energy (June 2023) https://doi.org/10.1088/2515-7655/acdd9c  
  41. Understanding the limits to short-range order suppression in many-component disordered rock salt lithium-ion cathode materials; Squires, A.G.; Scanlon, D.O.; Journal of Materials Chemistry A (June 2023) https://doi.org/10.1039/D3TA02088F   
  42. Low Temperature Epitaxial LiMn2O4 Cathodes Enabled by NiCo2O4 Current Collector for High-Performance Microbatteries; Lovett, A.J.; Daramalla, V.; Sayed, F.N.; Nayak, D.; de h-Óra, M.; Grey, C.P.; Dutton, S.E.; MacManus-Driscoll, J.L.; ACS Energy Letters (July 2023) https://doi.org/10.1021/acsenergylett.3c01094  (See also CATMAT) 
  43. Mechanosynthesis of Disordered Rock Salt Structures: Thermodynamic and Kinetic Considerations; Zhi, X.; West, A.R.; Chemistry of Materials (Aug 2023) https://doi.org/10.1021/acs.chemmater.3c01080  
  44. Insights into surface chemistry down to nanoscale: An accessible colour hyperspectral imaging approach for scanning electron microscopy; Nohl, J.F.; Farr, N.T.H.; Sun, Y.; Hughes, G.M.; Stehling, N.; Zhang, J.; Longman, F.; Ives, G.; Pokorná, Z.; Mika, F.; Kumar, V.; Mihaylova, L.; Holland, C.; Cussen, S.A.; Rodenburg, C.; Materials Today Advances (Aug 2023) https://doi.org/10.1016/j.mtadv.2023.100413 (See also Nextrode, Degradation) 
  45. 3D Nanocomposite Thin Film Cathodes for Micro-Batteries with Enhanced High-Rate Electrochemical Performance over Planar Films; Lovett, A.J.; Daramalla, V.; Nayak, D.; Sayed, F.N.; Mahadevegowda, A.; Ducati, C.; Spencer, B.F.; Dutton, S.E.; Grey, C.P.; MacManus-Driscoll, J.L.; Advanced Energy Materials (Aug 2023) https://doi.org/10.1002/aenm.202302053 (See also CATMAT, Degradation) 
  46. Decoding short-range order in cation-disordered rocksalt materials using Metropolis non-negative matrix factorisation; Hua, X.; Dean, T.; Cussen, S.A.; Goodwin, A.L.; JPhys Materials (Sept 2023) https://doi.org/10.1088/2515-7639/acf5a5  
  47. Elucidating local diffusion dynamics in nickel-rich layered oxide cathodes; Johnston, B.I.J.; McClelland, I.; Baker, P.J.; Cussen, S.A.; Physical Chemistry Chemical Physics (Sept 2023) https://doi.org/10.1039/D3CP02662K  (See also Degradation) 
  48. The strength of a constrained lithium layer; Stallard, J.C.; Vema, S.; Grey, C.P.; Deshpande, V.S.; Fleck, N.A.; Acta Materialia (Sept 2023) https://doi.org/10.1016/j.actamat.2023.119313  (See also Degradation, SOLBAT)