A full list of publications to from the Recycling and Reuse (ReLiB) project to October 2023 can be found here.

  1. Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles; Raugei, M.; Winfield, P.; Journal of Cleaner Production (March 2019) https://doi.org/10.1016/j.jclepro.2018.12.237 
  2. Production of biogenic nanoparticles for the reduction of 4-Nitrophenol and oxidative laccase-like reactions; Capeness, M.J.; Echavarri-Bravo, V.; Horsfall, L.E.; Frontiers in Microbiology (May 2019) https://doi.org/10.3389/fmicb.2019.00997 
  3. Sorting of Spent Electric Vehicle Batteries for Second Life Application; Muhammad, M.; Attidekou, P.S.; Ahmeid, M.; Milojevic, Z.; Lambert, S.; Proceedings of 2019 the 7th International Conference on Smart Energy Grid Engineering, SEGE 2019 (Aug 2019) https://doi.org/10.1109/SEGE.2019.8859921 
  4. Energy Return on Investment: Setting the Record Straight; Raugei, M.; Joule (Aug 2019) https://doi.org/10.1016/j.joule.2019.07.020 
  5. ‘Our Waste, our Resources; A Strategy for England’– Switching to a circular economy through the use of extended producer responsibility; Dawson, L.; Environmental Law Review (Sept 2019) https://doi.org/10.1177/1461452919851943 
  6. Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies; Rajaeifar, M.A.; Tabatabaei, M.; Aghbashlo, M.; Nizami, A.-S.; Heidrich, O.; Renewable and Sustainable Energy Reviews (Sept 2019) https://doi.org/10.1016/j.rser.2019.05.004 
  7. The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget; Hill, G.; Heidrich, O.; Creutzig, F.; Blythe, P.; Applied Energy (Oct 2019) https://doi.org/10.1016/j.apenergy.2019.04.107 
  8. Assessment of spent EV batteries for second-life application; Muhammad, M.; Ahmeid, M.; Attidekou, P.S.; Milojevic, Z.; Lambert, S.; Das, P.; 2019 IEEE 4th International Future Energy Electronics Conference, IFEEC 2019 (Nov 2019) https://doi.org/10.1109/IFEEC47410.2019.9015015 
  9. The Energy Loss Due to Interconnections in Paralleled Cell Configurations of Lithium-Ion Batteries in Electric Vehicles; Ahmeid, M.; Muhammad, M.; Milojevic, Z.; Lambert, S.; Attidekou, P.; 2019 IEEE 4th International Future Energy Electronics Conference, IFEEC 2019 (Nov 2019) https://doi.org/10.1109/IFEEC47410.2019.9014956 
  10. Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents; Al-Murshedi, A.Y.M.; Hartley, J.M.; Abbott, A.P.; Ryder, K.S.; Transactions of the Institute of Metal Finishing (Nov 2019) https://doi.org/10.1080/00202967.2019.1671062 
  11. Recycling lithium-ion batteries from electric vehicles; Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; Abbott, A.; Ryder, K.; Gaines, L.; Anderson, P.; Nature (Nov 2019) https://doi.org/10.1038/s41586-019-1682-5 
  12. What Are the Energy and Environmental Impacts of Adding Battery Storage to Photovoltaics? A Generalized Life Cycle Assessment; Raugei, M.; Leccisi, E.; Fthenakis, V.M.; Energy Technology (Jan 2020) https://doi.org/10.1002/ente.201901146 
  13. Object shape estimation and modeling, based on sparse Gaussian process implicit surfaces, combining visual data and tactile exploration; Gandler, G.Z.; Ek, C.H.; Björkman, M.; Stolkin, R.; Bekiroglu, Y.; Robotics and Autonomous Systems (April 2020) https://doi.org/10.1016/j.robot.2020.103433 
  14. Disassembly of Li ion cells—characterization and safety considerations of a recycling scheme; Marshall, J.; Gastol, D.; Sommerville, R.; Middleton, B.; Goodship, V.; Kendrick, E.; Metals (June 2020) https://doi.org/10.3390/met10060773 
  15. Experimental Visualization of Commercial Lithium Ion Battery Cathodes: Distinguishing between the Microstructure Components Using Atomic Force Microscopy; Terreblanche, J.S.; Thompson, D.L.; Aldous, I.M.; Hartley, J.; Abbott, A.P.; Ryder, K.S.; Journal of Physical Chemistry C (June 2020) https://doi.org/10.1021/acs.jpcc.0c02713 
  16. The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries; Driscoll, E.H.; Hayward, E.C.; Patchett, R.; Anderson, P.A.; Slater, P.R.; Journal of Chemical Education (June 2020) https://doi.org/10.1021/acs.jchemed.0c00282 (See also CATMAT, Degradation, Nextrode 
  17. The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents; Pateli, I.M.; Thompson, D.; Alabdullah, S.S.M.; Abbott, A.P.; Jenkin, G.R.T.; Hartley, J.M.; Green Chemistry (July 2020) https://doi.org/10.1039/d0gc02023k 
  18. A circular economy for electric vehicle batteries: driving the change; Ahuja, J.; Dawson, L.; Lee, R.; Journal of Property, Planning and Environmental Law (Aug 2020) https://doi.org/10.1108/JPPEL-02-2020-0011 
  19. A review of physical processes used in the safe recycling of lithium ion batteries; Sommerville, R.; Shaw-Stewart, J.; Goodship, V.; Rowson, N.; Kendrick, E.; Sustainable Materials and Technologies (Sept 2020) https://doi.org/10.1016/j.susmat.2020.e00197 
  20. Fast operando X-ray pair distribution function using the DRIX electrochemical cell; Diaz-Lopez, M.; Cutts, G.L.; Allan, P.K.; Keeble, D.S.; Ross, A.; Pralong, V.; Spiekermann, G.; Chatera, P.A.; Journal of Synchrotron Radiation (Sept 2020) https://doi.org/10.1107/S160057752000747X 
  21. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials; Baars, J.; Domenech, T.; Bleischwitz, R.; Melin, H.E.; Heidrich, O.; Nature Sustainability (Sept 2020) https://doi.org/10.1038/s41893-020-00607-0 
  22. A rapid neural network–based state of health estimation scheme for screening of end of life electric vehicle batteries; Rastegarpanah, A.; Hathaway, J.; Ahmeid, M.; Lambert, S.; Walton, A.; Stolkin, R.; Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering (Sept 2020) https://doi.org/10.1177/0959651820953254 
  23. Does energy storage provide a profitable second life for electric vehicle batteries?; Wu, W.; Lin, B.; Xie, C.; Elliott, R.J.R.; Radcliffe, J.; Energy Economics (Oct 2020) https://doi.org/10.1016/j.eneco.2020.105010 
  24. Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes; Nicholls, D.; Lee, J.; Amari, H.; Stevens, A.J.; Mehdi, B.L.; Browning, N.D.; Nanoscale (Oct 2020) https://doi.org/10.1039/d0nr04589f  (See also Degradation, Characterisation 
  25. The importance of design in lithium ion battery recycling-a critical review; Thompson, D.L.; Hartley, J.M.; Lambert, S.M.; Shiref, M.; Harper, G.D.J.; Kendrick, E.; Anderson, P.; Ryder, K.S.; Gaines, L.; Abbott, A.P.; Green Chemistry (Oct 2020) https://doi.org/10.1039/d0gc02745f 
  26. Beyond the EVent horizon: Battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition; Skeete, J.-P.; Wells, P.; Dong, X.; Heidrich, O.; Harper, G.; Energy Research and Social Science (Nov 2020) https://doi.org/10.1016/j.erss.2020.101581 
  27. Are Current 3D Descriptors Ready for Real-time Object Recognition?; Joshi, P.; Rastegarpanah, A.; Stolkin, R.; 2020 8th International Conference on Control, Mechatronics and Automation, ICCMA 2020 (Nov 2020) https://doi.org/10.1109/ICCMA51325.2020.9301565 
  28. A Survey on Training Free 3D Texture-less Object Recognition Techniques; Joshi, P.; Rastegarpanah, A.; Stolkin, R.; 2020 Digital Image Computing: Techniques and Applications, DICTA 2020 (Nov 2020) https://doi.org/10.1109/DICTA51227.2020.9363389 
  29. Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents; Pateli, I.M.; Abbott, A.P.; Jenkin, G.R.T.; Hartley, J.M.; Green Chemistry (Nov 2020) https://doi.org/10.1039/d0gc03491f 
  30. Methodologies for Large-Size Pouch Lithium-Ion Batteries End-of-Life Gateway Detection in the Second-Life Application; Attidekou, P.S.; Milojevic, Z.; Muhammad, M.; Ahmeid, M.; Lambert, S.; Das, P.K.; Journal of the Electrochemical Society (Dec 2020) https://doi.org/10.1149/1945-7111/abd1f1 
  31. The EV revolution: The road ahead for critical raw materials demand; Jones, B.; Elliott, R.J.R.; Nguyen-Tien, V.; Applied Energy (Dec 2020) https://doi.org/10.1016/j.apenergy.2020.115072 
  32. Optimal grasp selection, and control for stabilising a grasped object, with respect to slippage and external forces; Pardi, T.; Ghalamzan E., A.; Ortenzi, V.; Stolkin, R.; IEEE-RAS International Conference on Humanoid Robots (Jan 2021) https://doi.org/10.1109/HUMANOIDS47582.2021.9555805 
  33. A qualitative assessment of lithium ion battery recycling processes; Sommerville, R.; Zhu, P.; Rajaeifar, M.A.; Heidrich, O.; Goodship, V.; Kendrick, E.; Resources, Conservation and Recycling (Feb 2021) https://doi.org/10.1016/j.resconrec.2020.105219 
  34. A review of current collectors for lithium-ion batteries; Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E.; Journal of Power Sources (Feb 2021) https://doi.org/10.1016/j.jpowsour.2020.229321 
  35. A Unified Method for the Recovery of Metals from Chalcogenides; Bevan, F.; Galeb, H.; Black, A.; Pateli, I.M.; Allen, J.; Perez, M.; Feldmann, J.; Harris, R.; Jenkin, G.; Abbott, A.; Hartley, J.; ACS Sustainable Chemistry and Engineering (Feb 2021) https://doi.org/10.1021/acssuschemeng.0c09120 
  36. Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy; Lee, J.; Nicholls, D.; Browning, N.D.; Mehdi, B.L.; Physical Chemistry Chemical Physics (March 2021) https://doi.org/10.1039/d0cp06369j (See also Degradation, Characterisation 
  37. Motion planning and control of an omnidirectional mobile robot in dynamic environments; Azizi, M.R.; Rastegarpanah, A.; Stolkin, R.; Robotics (March 2021) https://doi.org/10.3390/robotics10010048 
  38. Lithium: The big picture; Crawford, A.; Lunde Seefeldt, J.; Kent, R.; Helbert, M.; Guzmán, G.P.; González, A.; Chen, Z.; Abbott, A.; One Earth (March 2021) https://doi.org/10.1016/j.oneear.2021.02.021 
  39. Towards robotizing the processes of testing lithium-ion batteries; Rastegarpanah, A.; Ahmeid, M.; Marturi, N.; Attidekou, P.S.; Musbahu, M.; Ner, R.; Lambert, S.; Stolkin, R.; Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering (March 2021) https://doi.org/10.1177/0959651821998599 
  40. A dynamic material flow analysis of lithium-ion battery metals for electric vehicles and grid storage in the UK: Assessing the impact of shared mobility and end-of-life strategies; Kamran, M.; Raugei, M.; Hutchinson, A.; Resources, Conservation and Recycling (April 2021) https://doi.org/10.1016/j.resconrec.2021.105412 
  41. A training free technique for 3D object recognition using the concept of vibration, energy and frequency[Formula presented]; Joshi, P.; Rastegarpanah, A.; Stolkin, R.; Computers and Graphics (Pergamon) (April 2021) https://doi.org/10.1016/j.cag.2021.01.014 
  42. Simultaneous Tactile Exploration and Grasp Refinement for Unknown Objects; De Farias, C.; Marturi, N.; Stolkin, R.; Bekiroglu, Y.; IEEE Robotics and Automation Letters (April 2021) https://doi.org/10.1109/LRA.2021.3063074 
  43. Rapid model-free state of health estimation for end-of-first-life electric vehicle batteries using impedance spectroscopy; Rastegarpanah, A.; Hathaway, J.; Stolkin, R.; Energies (May 2021) https://doi.org/10.3390/en14092597 
  44. Thermal and mechanical abuse of electric vehicle pouch cell modules; Christensen, P.A.; Milojevic, Z.; Wise, M.S.; Ahmeid, M.; Attidekou, P.S.; Mrozik, W.; Dickmann, N.A.; Restuccia, F.; Lambert, S.M.; Das, P.K.; Applied Thermal Engineering (May 2021) https://doi.org/10.1016/j.applthermaleng.2021.116623 
  45. Steering extended producer responsibility for electric vehicle batteries; Dawson, L.; Ahuja, J.; Lee, R.; Environmental Law Review (May 2021) https://doi.org/10.1177/14614529211006069 
  46. Financial viability of electric vehicle lithium-ion battery recycling; Lander, L.; Cleaver, T.; Rajaeifar, M.A.; Nguyen-Tien, V.; Elliott, R.J.R.; Heidrich, O.; Kendrick, E.; Edge, J.S.; Offer, G.; iScience (June 2021) https://doi.org/10.1016/j.isci.2021.102787 (See also MSM 
  47. Semi-autonomous behaviour tree-based framework for sorting electric vehicle batteries components; Rastegarpanah, A.; Gonzalez, H.C.; Stolkin, R.; Robotics (June 2021) https://doi.org/10.3390/robotics10020082 
  48. Lithium ion battery recycling using high-intensity ultrasonication; Lei, C.; Aldous, I.; Hartley, J.M.; Thompson, D.L.; Scott, S.; Hanson, R.; Anderson, P.A.; Kendrick, E.; Sommerville, R.; Ryder, K.S.; Abbott, A.P.; Green Chemistry (June 2021) https://doi.org/10.1039/d1gc01623g 
  49. Life cycle assessment of lithium-ion battery recycling using pyrometallurgical technologies; Rajaeifar, M.A.; Raugei, M.; Steubing, B.; Hartwell, A.; Anderson, P.A.; Heidrich, O.; Journal of Industrial Ecology (June 2021) https://doi.org/10.1111/jiec.13157 
  50. Optimized hybrid decoupled visual servoing with supervised learning; Rastegarpanah, A.; Aflakian, A.; Stolkin, R.; Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering (June 2021) https://doi.org/10.1177/09596518211028379 
  51. The Complex Role of Aluminium Contamination in Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries; Lee, J.; Amari, H.; Bahri, M.; Shen, Z.; Xu, C.; Ruff, Z.; Grey, C.P.; Ersen, O.; Aguadero, A.; Browning, N.D.; Mehdi, B.L.; Batteries and Supercaps (June 2021) https://doi.org/10.1002/batt.202100110 (See also Degradation 
  52. Global implications of the EU battery regulation; Melin, H.E.; Rajaeifar, M.A.; Ku, A.Y.; Kendall, A.; Harper, G.; Heidrich, O.; Science (July 2021) https://doi.org/10.1126/science.abh1416 
  53. Vision-Guided MPC for Robotic Path Following Using Learned Memory-Augmented Model; Rastegarpanah, A.; Hathaway, J.; Stolkin, R.; Frontiers in Robotics and AI (July 2021) https://doi.org/10.3389/frobt.2021.688275 
  54. Nut unfastening by robotic surface exploration; Rastegarpanah, A.; Ner, R.; Stolkin, R.; Marturi, N.; Robotics (Sept 2021) https://doi.org/10.3390/robotics10030107 
  55. Risk management over the life cycle of lithium-ion batteries in electric vehicles; Christensen, P.A.; Anderson, P.A.; Harper, G.D.J.; Lambert, S.M.; Mrozik, W.; Rajaeifar, M.A.; Wise, M.S.; Heidrich, O.; Renewable and Sustainable Energy Reviews (Sept 2021) https://doi.org/10.1016/j.rser.2021.111240 
  56. Influence of orientation on ageing of large-size pouch lithium-ion batteries during electric vehicle life; Milojevic, Z.; Attidekou, P.S.; Muhammad, M.; Ahmeid, M.; Lambert, S.; Das, P.K.; Journal of Power Sources (Sept 2021) https://doi.org/10.1016/j.jpowsour.2021.230242 
  57. An Efficient Technique for Filtering of 3D Cluttered Surfaces; Joshi, P.; Rastegarpanah, A.; Stolkin, R.; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Oct 2021) https://doi.org/10.1007/978-3-030-87897-9_4 
  58. Deep eutectic solvents—The vital link between ionic liquids and ionic solutions; Abbott, A.P.; Edler, K.J.; Page, A.J.; Journal of Chemical Physics (Oct 2021) https://doi.org/10.1063/5.0072268 
  59. Environmental implications of the ongoing electrification of the UK light duty vehicle fleet; Raugei, M.; Kamran, M.; Hutchinson, A.; Resources, Conservation and Recycling (Nov 2021) https://doi.org/10.1016/j.resconrec.2021.105818 
  60. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries; Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P.; Energy and Environmental Science (Oct 2021) https://doi.org/10.1039/d1ee00691f (See also SafeBatt 
  61. Debondable adhesives and their use in recycling; Mulcahy, K.R.; Kilpatrick, A.F.R.; Harper, G.D.J.; Walton, A.; Abbott, A.P.; Green Chemistry (Nov 2021) https://doi.org/10.1039/d1gc03306a 
  62. Improving the manipulability of a redundant arm using decoupled hybrid visual servoing; Rastegarpanah, A.; Aflakian, A.; Stolkin, R.; Applied Sciences (Switzerland) (Dec 2021) https://doi.org/10.3390/app112311566 
  63. Nanoscale state-of-charge heterogeneities within polycrystalline nickel-rich layered oxide cathode materials; Tan, C.; Leach, A.S.; Heenan, T.M.M.; Parks, H.; Jervis, R.; Weker, J.N.; Brett, D.J.L.; Shearing, P.R.; Cell Reports Physical Science (Dec 2021) https://doi.org/10.1016/j.xcrp.2021.100647 (See also Degradation, SafeBatt 
  64. To shred or not to shred: A comparative techno-economic assessment of lithium ion battery hydrometallurgical recycling retaining value and improving circularity in LIB supply chains; Thompson, D.; Hyde, C.; Hartley, J.M.; Abbott, A.P.; Anderson, P.A.; Harper, G.D.J.; Resources, Conservation and Recycling (Dec 2021) https://doi.org/10.1016/j.resconrec.2021.105741 
  65. Predicting the Remaining Life of Lithium-ion Batteries Using a CNN-LSTM Model; Rastegarpanah, A.; Wang, Y.; Stolkin, R.; 2022 8th International Conference on Mechatronics and Robotics Engineering, ICMRE 2022 (Jan 2022) https://doi.org/10.1109/ICMRE54455.2022.9734081 
  66. Calcium chloride-based systems for metal electrodeposition; Hartley, J.M.; Allen, J.; Meierl, J.; Schmidt, A.; Krossing, I.; Abbott, A.P.; Electrochimica Acta (Jan 2022) https://doi.org/10.1016/j.electacta.2021.139560 
  67. Catalytic dissolution of metals from printed circuit boards using a calcium chloride-based deep eutectic solvent; Marin Rivera, R.; Zante, G.; Hartley, J.M.; Ryder, K.S.; Abbott, A.P.; Green Chemistry (March 2022) https://doi.org/10.1039/d1gc04694b 
  68. Impact of solid-electrolyte interphase layer thickness on lithium-ion battery cell surface temperature; Andriunas, I.; Milojevic, Z.; Wade, N.; Das, P.K.; Journal of Power Sources (March 2022) https://doi.org/10.1016/j.jpowsour.2022.231126 
  69. Grasp Transfer for Deformable Objects by Functional Map Correspondence; C. de Farias, B. Tamadazte, R. Stolkin, N. Marturi; arXiv (March 2022) https://doi.org/10.48550/arXiv.2203.00776 
  70. Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling; Boyce, A.M.; Martínez-Pañeda, E.; Wade, A.; Zhang, Y.S.; Bailey, J.J.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (April 2022) https://doi.org/10.1016/j.jpowsour.2022.231119 (See also MSM, Degradation, Nextrode 
  71. High-Voltage Stabilization of O3-Type Layered Oxide for Sodium-Ion Batteries by Simultaneous Tin Dual Modification; Song, T.; Chen, L.; Gastol, D.; Dong, B.; Marco, J.F.; Berry, F.; Slater, P.; Reed, D.; Kendrick, E.; Chemistry of Materials (April 2022) https://doi.org/10.1021/acs.chemmater.2c00522 (See also CATMAT 
  72. Motion-enhancement assisted digital image correlation of lithium-ion batteries during lithiation; Jnawali, A.; Radhakrishnan, A.N.P.; Kok, M.D.R.; Iacoviello, F.; Brett, D.J.L.; Shearing, P.R.; Journal of Power Sources (April 2022) https://doi.org/10.1016/j.jpowsour.2022.231150 (See also SafeBatt 
  73. Operando Ultrasonic Monitoring of Lithium-Ion Battery Temperature and Behaviour at Different Cycling Rates and under Drive Cycle Conditions; Owen, R.E.; Robinson, J.B.; Weaving, J.S.; Pham, M.T.M.; Tranter, T.G.; Neville, T.P.; Billson, D.; Braglia, M.; Stocker, R.; Tidblad, A.A.; Shearing, P.R.; Brett, D.J.L.; Journal of the Electrochemical Society (April 2022) https://doi.org/10.1149/1945-7111/ac6833 (See also MSM, Degradation, SafeBatt, LiSTAR 
  74. Gelatin and Alginate Binders for Simplified Battery Recycling; Scott, S.; Terreblanche, J.; Thompson, D.L.; Lei, C.; Hartley, J.M.; Abbott, A.P.; Ryder, K.S.; Journal of Physical Chemistry C (May 2022) https://doi.org/10.1021/acs.jpcc.2c01282 
  75. Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective; Rajaeifar, M.A.; Ghadimi, P.; Raugei, M.; Wu, Y.; Heidrich, O.; Resources, Conservation and Recycling (May 2022) https://doi.org/10.1016/j.resconrec.2021.106144 
  76. Separation of nickel from cobalt and manganese in lithium ion batteries using deep eutectic solvents; Thompson, D.L.; Pateli, I.M.; Lei, C.; Jarvis, A.; Abbott, A.P.; Hartley, J.M.; Green Chemistry (May 2022) https://doi.org/10.1039/d2gc00606e 
  77. A rapid capacity evaluation of retired electric vehicle battery modules using partial discharge test; Ahmeid, M.; Muhammad, M.; Lambert, S.; Attidekou, P.S.; Milojevic, Z.; Journal of Energy Storage (June 2022) https://doi.org/10.1016/j.est.2022.104562 
  78. LAYERS: A Decision-Support Tool to Illustrate and Assess the Supply and Value Chain for the Energy Transition; Heidrich, O.; Ford, A.C.; Dawson, R.J.; Manning, D.A.C.; Mohareb, E.; Raugei, M.; Baars, J.; Rajaeifar, M.A.; Sustainability (Switzerland) (June 2022) https://doi.org/10.3390/su14127120 
  79. Reclaimed and Up-Cycled Cathodes for Lithium-Ion Batteries; Gastol, D.; Marshall, J.; Cooper, E.; Mitchell, C.; Burnett, D.; Song, T.; Sommerville, R.; Middleton, B.; Crozier, M.; Smith, R.; Haig, S.; McElroy, C.R.; van Dijk, N.; Croft, P.; Goodship, V.; Kendrick, E.; Global Challenges (June 2022) https://doi.org/10.1002/gch2.202200046 
  80. Selective bacterial separation of critical metals: a sustainable method for recycling lithium ion batteries; Echavarri-Bravo, V.; Amari, H.; Hartley, J.; Maddalena, G.; Kirk, C.; Tuijtel, M.W.; Browning, N.D.; Horsfall, L.E.; ChemRxiv (June 2022) https://doi.org/10.26434/chemrxiv-2022-t862c 
  81. Quo vadis MFA? Integrated material flow analysis to support material efficiency; Baars, J.; Rajaeifar, M.A.; Heidrich, O.; Journal of Industrial Ecology (July 2022) https://doi.org/10.1111/jiec.13288 
  82. Tracking linear deformable objects using slicing method; Rastegarpanah, A.; Howard, R.; Stolkin, R.; Robotica (Aug 2022) https://doi.org/10.1017/S0263574721001065 
  83. The sustainable materials roadmap; Titirici, M.; Baird, S.G.; Sparks, T.D.; Yang, S.M.; Brandt-Talbot, A.; Hosseinaei, O.; Harper, D.P.; Parker, R.M.; Vignolini, S.; Berglund, L.A.; Li, Y.; Gao, H.-L.; Mao, L.-B.; Yu, S.-H.; Díez, N.; Ferrero, G.A.; Sevilla, M.; Szilágyi, P.i.; Stubbs, C.J.; Worch, J.C.; Huang, Y.; Luscombe, C.K.; Lee, K.-Y.; Luo, H.; Platts, M.J.; Tiwari, D.; Kovalevskiy, D.; Fermin, D.J.; Au, H.; Alptekin, H.; Crespo-Ribadeneyra, M.; Ting, V.P.; Fellinger, T.-P.; Barrio, J.; Westhead, O.; Roy, C.; Stephens, I.E.L.; Nicolae, S.A.; Sarma, S.C.; Oates, R.P.; Wang, C.-G.; Li, Z.; Loh, X.J.; Myers, R.J.; Heeren, N.; Grégoire, A.; Périssé, C.; Zhao, X.; Vodovotz, Y.; Earley, B.; Finnveden, G.; Björklund, A.; Harper, G.D.J.; Walton, A.; Anderson, P.A.; JPhys Materials (Aug 2022) https://doi.org/10.1088/2515-7639/ac4ee5 (See also LiSTAR) 
  84. Iodine speciation in deep eutectic solvents; Hartley, J.M.; Scott, S.; Dilruba, Z.; Lucio, A.J.; Bird, P.J.; Harris, R.C.; Jenkin, G.R.T.; Abbott, A.P.; Physical Chemistry Chemical Physics (Sept 2022) https://doi.org/10.1039/d2cp03185j 
  85. Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy; Nguyen-Tien, V.; Dai, Q.; Harper, G.D.J.; Anderson, P.A.; Elliott, R.J.R.; Applied Energy (Sept 2022) https://doi.org/10.1016/j.apenergy.2022.119230 
  86. Robot Vitals and Robot Health: Towards Systematically Quantifying Runtime Performance Degradation in Robots Under Adverse Conditions; Ramesh, A.; Stolkin, R.; Chiou, M.; IEEE Robotics and Automation Letters (Oct 2022) https://doi.org/10.1109/LRA.2022.3192612 
  87. The electric vehicle revolution: Critical material supply chains, trade and development; Jones, B.; Nguyen-Tien, V.; Elliott, R.J.R.; World Economy (Oct 2022) https://doi.org/10.1111/twec.13345 
  88. Sustainable Upcycling of Spent Electric Vehicle Anodes into Solution-Processable Graphene Nanomaterials; Stafford, J.; Kendrick, E.; Industrial and Engineering Chemistry Research (Oct 2022) https://doi.org/10.1021/acs.iecr.2c02634 
  89. Tailoring lixiviant properties to optimise selectivity in E-waste recycling ; Hartley, J.M.; Scott, S.; Marin Rivera, R.; Hunt, P.; Lucio, A.J.; Bird, P.; Harris, R.; Jenkin, G.R.T.; Abbott, A.P.; RSC Sustainability (Oct 2022) https://doi.org/10.1039/d2su00038e 
  90. Pvdf-Induced Degradation of Nmc-Based Cathode Materials During Direct Recycling; Giles, E.; Slater, P.R.; Chater, P.A.; Allan, P.; Anderson, P.A.; SSRN (Nov 2022) https://doi.org/10.2139/ssrn.4264094 
  91. Direct reuse of aluminium and copper current collectors from spent lithium-ion batteries; Zhu, P.; Driscoll, E.H.; Dong, B.; Sommerville, R.; Zorin, A.; Slater, P.R.; Kendrick, E.; Green Chemistry (Dec 2022) https://doi.org/10.1039/D2GC03940K (See also Nextrode, CATMAT 
  92. Anion effect on the redox properties of copper ions in ionic liquids and deep eutectic solvents; Daskalopoulou, E.; Hartley, J.M.; Rivera, R.M.; Zante, G.; Abbott, A.P.; Physical Chemistry Chemical Physics (Jan 2023) https://doi.org/10.1039/D2CP04389K 
  93. Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs; Lander, L.; Tagnon, C.; Nguyen-Tien, V.; Kendrick, E.; Elliott, R.J.R.; Abbott, A.P.; Edge, J.S.; Offer, G.J.; Applied Energy (Feb 2023) https://doi.org/10.1016/j.apenergy.2022.120437 (See also MSM 
  94. Roadmap for a sustainable circular economy in lithium-ion and future battery technologies; Harper, G.D.J.; Kendrick, E.; Anderson, P.A.; Mrozik, W.; Christensen, P.; Lambert, S.; Greenwood, D.; Das, P.K.; Ahmeid, M.; Milojevic, Z.; Du, W.; Brett, D.J.L.; Shearing, P.R.; Rastegarpanah, A.; Stolkin, R.; Sommerville, R.; Zorin, A.; Durham, J.L.; Abbott, A.P.; Thompson, D.; Browning, N.D.; Mehdi, B.L.; Bahri, M.; Schanider-Tontini, F.; Nicholls, D.; Stallmeister, C.; Friedrich, B.; Sommerfeld, M.; Driscoll, L.L.; Jarvis, A.; Giles, E.C.; Slater, P.R.; Echavarri-Bravo, V.; Maddalena, G.; Horsfall, L.E.; Gaines, L.; Dai, Q.; Jethwa, S.J.; Lipson, A.L.; Leeke, G.A.; Cowell, T.; Farthing, J.G.; Mariani, G.; Smith, A.; Iqbal, Z.; Golmohammadzadeh, R.; Sweeney, L.; Goodship, V.; Li, Z.; Edge, J.; Lander, L.; Nguyen, V.T.; Elliot, R.J.R.; Heidrich, O.; Slattery, M.; Reed, D.; Ahuja, J.; Cavoski, A.; Lee, R.; Driscoll, E.; Baker, J.; Littlewood, P.; Styles, I.; Mahanty, S.; Boons, F.; JPhys Energy (Feb 2023) https://doi.org/10.1088/2515-7655/acaa57 (See also MSM 
  95. Vapor Equilibrium Data for the Binary Mixtures of Dimethyl Carbonate and Ethyl Methyl Carbonate in Compressed Carbon Dioxide; Jethwa, S.J.; Román-Ramírez, L.A.; Anderson, P.A.; Leeke, G.A.; International Journal of Thermophysics (April 2023) https://doi.org/10.1007/s10765-023-03186-2 
  96. Combining multi-modal non-destructive techniques to investigate ageing and orientation effects in automotive Li-ion pouch cells; Fordham, A.; Milojevic, Z.; Giles, E.; Du, W.; Owen, R.E.; Michalik, S.; Chater, P.; Das, P.; Attidekou, P.; Lambert, S.; Allan, P.; Slater, P.R.; Anderson, P.; Jervis, R.; Shearing, P.R.; Brett, D.J.; ChemRxiv (May 2023) https://doi.org/10.26434/chemrxiv-2023-cghv4 (See also CATMAT, SafeBatt, LiSTAR) 
  97. Targeted recovery of metals from Thermoelectric Generators (TEGs) using chloride brines and ultrasound; Zante, G.; Daskalopoulou, E.; Elgar, C.E.; Marin Rivera, R.; Hartley, J.; Simpson, K.; Tuley, R.; Kettle, J.; Abbott, A.P.; RSC Sustainability (May 2023) https://doi.org/10.1039/D3SU00087G 
  98. Designing lithium ion batteries for recycle: The role of adhesives; Scott, S.; Islam, Z.; Allen, J.; Yingnakorn, T.; Alflakian, A.; Hathaway, J.; Rastegarpanah,A.; Harper, G.D.J.; Kendrick, E.; Anderson, P.A.; Edge, J.; Lander, L.; Abbott, A.P. ; Next Energy (June 2023) https://doi.org/10.1016/j.nxener.2023.100023 
  99. Structural and electrochemical insights into novel Wadsley Roth Nb7Ti1.5Mo1.5O25 and Ta7Ti1.5Mo1.5O25 anodes for Li-ion battery application; Green, A.J.; Driscoll, E.H.; Lakhdar, Y.; Kendrick, E.; Slater, P.R.; Dalton Transactions (Aug 2023) https://doi.org/10.1039/D3DT02144K (See also CATMAT) 
  100. Concentrated ionic fluids for processing metals: Is there a difference between brines and deep eutectic solvents?; Zante, G.; Elgar, C.E.; George, K.; Abbott, A.P.; Hartley, J.M. ; Agew. Chem. Int. Ed. (Sept 2023) https://doi.org/10.1002/anie.202311140