A full list of publications to from the Solid-state Batteries (SOLBAT) project to October 2023 can be found here.   

  1. Selective and Facile Synthesis of Sodium Sulfide and Sodium Disulfide Polymorphs; El-Shinawi, H.; Cussen, E.J.; Corr, S.A.; Inorganic Chemistry (June 2018) https://doi.org/10.1021/acs.inorgchem.8b00776  
  2. Na1.5La1.5TeO6: Na+ conduction in a novel Na-rich double perovskite; Amores, M.; Baker, P.J.; Cussen, E.J.; Corr, S.A.; Chemical Communications (Aug 2018) https://doi.org/10.1039/c8cc03367f  
  3. Lithium Transport in Li4.4 M0.4 M′0.6S4 (M = Al3+, Ga3+, and M′ = Ge4+, Sn4+): Combined Crystallographic, Conductivity, Solid State NMR, and Computational Studies; Leube, B.T.; Inglis, K.K.; Carrington, E.J.; Sharp, P.M.; Shin, J.F.; Neale, A.R.; Manning, T.D.; Pitcher, M.J.; Hardwick, L.J.; Dyer, M.S.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Chemistry of Materials (Sept 2018) https://doi.org/10.1021/acs.chemmater.8b03175  
  4. Low-Dose Aberration-Free Imaging of Li-Rich Cathode Materials at Various States of Charge Using Electron Ptychography; Lozano, J.G.; Martinez, G.T.; Jin, L.; Nellist, P.D.; Bruce, P.G.; Nano Letters (Sept 2018) https://doi.org/10.1021/acs.nanolett.8b02718  
  5. Thermal Degradation of Monolayer MoS 2 on SrTiO 3 Supports ; Chen, P.; Xu, W.; Gao, Y.; Holdway, P.; Warner, J.H.; Castell, M.R.; Journal of Physical Chemistry C (Jan 2019) https://doi.org/10.1021/acs.jpcc.8b11298  
  6. Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm−1 and its primary applications in symmetric battery cells; Ma, Q.; Tsai, C.-L.; Wei, X.-K.; Heggen, M.; Tietz, F.; Irvine, J.T.S.; Journal of Materials Chemistry A (Feb 2019) https://doi.org/10.1039/c9ta00048h  
  7. Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries; Cowan, A.J.; Hardwick, L.J.; Annual Review of Analytical Chemistry (April 2019) https://doi.org/10.1146/annurev-anchem-061318-115303  (See also Degradation 
  8. 7 Li NMR Chemical Shift Imaging to Detect Microstructural Growth of Lithium in All-Solid-State Batteries ; Marbella, L.E.; Zekoll, S.; Kasemchainan, J.; Emge, S.P.; Bruce, P.G.; Grey, C.P.; Chemistry of Materials (April 2019) https://doi.org/10.1021/acs.chemmater.8b04875  
  9. What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?; House, R.A.; Maitra, U.; Jin, L.; Lozano, J.G.; Somerville, J.W.; Rees, N.H.; Naylor, A.J.; Duda, L.C.; Massel, F.; Chadwick, A.V.; Ramos, S.; Pickup, D.M.; McNally, D.E.; Lu, X.; Schmitt, T.; Roberts, M.R.; Bruce, P.G.; Chemistry of Materials (April 2019) https://doi.org/10.1021/acs.chemmater.9b00227  
  10. Nature of the “z”-phase in layered Na-ion battery cathodes; Somerville, J.W.; Sobkowiak, A.; Tapia-Ruiz, N.; Billaud, J.; Lozano, J.G.; House, R.A.; Gallington, L.C.; Ericsson, T.; Häggström, L.; Roberts, M.R.; Maitra, U.; Bruce, P.G.; Energy and Environmental Science (May 2019) https://doi.org/10.1039/c8ee02991a  
  11. Easy access to oxygenated block polymers via switchable catalysis; Stößer, T.; Sulley, G.S.; Gregory, G.L.; Williams, C.K.; Nature Communications (June 2019) https://doi.org/10.1038/s41467-019-10481-w  
  12. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells; Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G.O.; Marrow, J.; Bruce, P.G.; Nature Materials (July 2019) https://doi.org/10.1038/s41563-019-0438-9  
  13. Co-spray printing of LiFePO4 and PEO-Li1.5Al0.5Ge1.5(PO4)3 hybrid electrodes for all-solid-state Li-ion battery applications; Bu, J.; Leung, P.; Huang, C.; Lee, S.H.; Grant, P.S.; Journal of Materials Chemistry A (Aug 2019) https://doi.org/10.1039/c9ta03824h  
  14. Dental Resin Monomer Enables Unique NbO2/Carbon Lithium-Ion Battery Negative Electrode with Exceptional Performance; Ji, Q.; Gao, X.; Zhang, Q.; Jin, L.; Wang, D.; Xia, Y.; Yin, S.; Xia, S.; Hohn, N.; Zuo, X.; Wang, X.; Xie, S.; Xu, Z.; Ma, L.; Chen, L.; Chen, G.Z.; Zhu, J.; Hu, B.; Müller-Buschbaum, P.; Bruce, P.G.; Cheng, Y.-J.; Advanced Functional Materials (Aug 2019) https://doi.org/10.1002/adfm.201904961  
  15. Dendrite nucleation in lithium-conductive ceramics; Li, G.; Monroe, C.W.; Physical Chemistry Chemical Physics (Sept 2019) https://doi.org/10.1039/c9cp03884a  
  16. Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes; Naylor, A.J.; Makkos, E.; Maibach, J.; Guerrini, N.; Sobkowiak, A.; Björklund, E.; Lozano, J.G.; Menon, A.S.; Younesi, R.; Roberts, M.R.; Edström, K.; Islam, M.S.; Bruce, P.G.; Journal of Materials Chemistry A (Sept 2019) https://doi.org/10.1039/c9ta09019c  
  17. Single-Step Spray Printing of Symmetric All-Organic Solid-State Batteries Based on Porous Textile Dye Electrodes; Leung, P.; Bu, J.; Quijano Velasco, P.; Roberts, M.R.; Grobert, N.; Grant, P.S.; Advanced Energy Materials (Sept 2019) https://doi.org/10.1002/aenm.201901418  
  18. A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li-S batteries; El-Shinawi, H.; Cussen, E.J.; Corr, S.A.; Nanoscale (Oct 2019) https://doi.org/10.1039/c9nr06239d  
  19. A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals; Al-Masri, D.; Yunis, R.; Zhu, H.; Jin, L.; Bruce, P.; Hollenkamp, A.F.; Pringle, J.M.; Journal of Materials Chemistry A (Oct 2019) https://doi.org/10.1039/c9ta11175a  
  20. Computationally Guided Discovery of the Sulfide Li3AlS3 in the Li-Al-S Phase Field: Structure and Lithium Conductivity; Gamon, J.; Duff, B.B.; Dyer, M.S.; Collins, C.; Daniels, L.M.; Surta, T.W.; Sharp, P.M.; Gaultois, M.W.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Chemistry of Materials (Oct 2019) https://doi.org/10.1021/acs.chemmater.9b03230  
  21. Is Nitrogen Present in Li3N·P2S5 Solid Electrolytes Produced by Ball Milling?; Hartley, G.O.; Jin, L.; Bergner, B.J.; Jolly, D.S.; Rees, G.J.; Zekoll, S.; Ning, Z.; Pateman, A.T.R.; Holc, C.; Adamson, P.; Bruce, P.G.; Chemistry of Materials (Nov 2019) https://doi.org/10.1021/acs.chemmater.9b01853  
  22. Sodium/Na β″ Alumina Interface: Effect of Pressure on Voids; Spencer Jolly, D.; Ning, Z.; Darnbrough, J.E.; Kasemchainan, J.; Hartley, G.O.; Adamson, P.; Armstrong, D.E.J.; Marrow, J.; Bruce, P.G.; ACS Applied Materials and Interfaces (Dec 2019) https://doi.org/10.1021/acsami.9b17786  
  23. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes; House, R.A.; Maitra, U.; Pérez-Osorio, M.A.; Lozano, J.G.; Jin, L.; Somerville, J.W.; Duda, L.C.; Nag, A.; Walters, A.; Zhou, K.-J.; Roberts, M.R.; Bruce, P.G.; Nature (Dec 2019) https://doi.org/10.1038/s41586-019-1854-3  
  24. The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte; Liu, J.; Gao, X.; Hartley, G.O.; Rees, G.J.; Gong, C.; Richter, F.H.; Janek, J.; Xia, Y.; Robertson, A.W.; Johnson, L.R.; Bruce, P.G.; Joule (Jan 2020) https://doi.org/10.1016/j.joule.2019.10.001  
  25. Mechanics of the Ideal Double-Layer Capacitor; Monroe, C.W.; Journal of the Electrochemical Society (Feb 2020) https://doi.org/10.1149/1945-7111/ab6b04 (See also MSM 
  26. Shapes of epitaxial gold nanocrystals on SrTiO3 substrates; Chen, P.; Murugappan, K.; Castell, M.R.; Physical Chemistry Chemical Physics (Feb 2020) https://doi.org/10.1039/c9cp06801e  
  27. Switchable Catalysis Improves the Properties of CO2-Derived Polymers: Poly(cyclohexene carbonate- b-ϵ-decalactone- b-cyclohexene carbonate) Adhesives, Elastomers, and Toughened Plastics; Sulley, G.S.; Gregory, G.L.; Chen, T.T.D.; Peña Carrodeguas, L.; Trott, G.; Santmarti, A.; Lee, K.-Y.; Terrill, N.J.; Williams, C.K.; Journal of the American Chemical Society (Feb 2020) https://doi.org/10.1021/jacs.9b13106  
  28. Observation of Interfacial Degradation of Li6PS5Cl against Lithium Metal and LiCoO2 via In Situ Electrochemical Raman Microscopy; Zhou, Y.; Doerrer, C.; Kasemchainan, J.; Bruce, P.G.; Pasta, M.; Hardwick, L.J.; Batteries and Supercaps (Feb 2020) https://doi.org/10.1002/batt.201900218  
  29. Multiscale Lithium-Battery Modeling from Materials to Cells; Li, G.; Monroe, C.W.; Annual Review of Chemical and Biomolecular Engineering (March 2020) https://doi.org/10.1146/annurev-chembioeng-012120-083016  
  30. Dendrites as climbing dislocations in ceramic electrolytes: Initiation of growth; Shishvan, S.S.; Fleck, N.A.; McMeeking, R.M.; Deshpande, V.S.; Journal of Power Sources (April 2020) https://doi.org/10.1016/j.jpowsour.2020.227989  
  31. Emerging X-ray imaging technologies for energy materials; Cao, C.; Toney, M.F.; Sham, T.-K.; Harder, R.; Shearing, P.R.; Xiao, X.; Wang, J.; Materials Today (April 2020) https://doi.org/10.1016/j.mattod.2019.08.011 (See also Degradation 
  32. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization; Gregory, G.L.; Sulley, G.S.; Carrodeguas, L.P.; Chen, T.T.D.; Santmarti, A.; Terrill, N.J.; Lee, K.-Y.; Williams, C.K.; Chemical Science (May 2020) https://doi.org/10.1039/d0sc00463d  
  33. Augmented saddle point formulation of the steady-state Stefan–Maxwell diffusion problem; Van-Brunt, A.; Farrell,P.E.; Monroe, C.W.; arXiv (June 2020) https://doi.org/10.48550/arXiv.2006.03321  
  34. The Role of Ni and Co in Suppressing O-Loss in Li-Rich Layered Cathodes; Boivin, E.; Guerrini, N.; House, R.A.; Lozano, J.G.; Jin, L.; Rees, G.J.; Somerville, J.W.; Kuss, C.; Roberts, M.R.; Bruce, P.G.; Advanced Functional Materials (Aug 2020) https://doi.org/10.1002/adfm.202003660 (See also CATMAT 
  35. 2020 roadmap on solid-state batteries; Pasta, M.; Armstrong, D.; Brown, Z.L.; Bu, J.; Castell, M.R.; Chen, P.; Cocks, A.; Corr, S.A.; Cussen, E.J.; Darnbrough, E.; Deshpande, V.; Doerrer, C.; Dyer, M.S.; El-Shinawi, H.; Fleck, N.; Grant, P.; Gregory, G.L.; Grovenor, C.; Hardwick, L.J.; Irvine, J.T.S.; Lee, H.J.; Li, G.; Liberti, E.; McClelland, I.; Monroe, C.; Nellist, P.D.; Shearing, P.R.; Shoko, E.; Song, W.; Jolly, D.S.; Thomas, C.I.; Turrell, S.J.; Vestli, M.; Williams, C.K.; Zhou, Y.; Bruce, P.G.; JPhys Energy (Aug 2020) https://doi.org/10.1088/2515-7655/ab95f4  
  36. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk; House, R.A.; Rees, G.J.; Pérez-Osorio, M.A.; Marie, J.-J.; Boivin, E.; Robertson, A.W.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P.G.; Nature Energy (Sept 2020) https://doi.org/10.1038/s41560-020-00697-2 (See also CATMAT 
  37. Growth rate of lithium filaments in ceramic electrolytes; Shishvan, S.S.; Fleck, N.A.; McMeeking, R.M.; Deshpande, V.S.; Acta Materialia (Sept 2020) https://doi.org/10.1016/j.actamat.2020.06.060  
  38. Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness; Zuo, X.; Wen, Y.; Qiu, Y.; Cheng, Y.-J.; Yin, S.; Ji, Q.; You, Z.; Zhu, J.; Müller-Buschbaum, P.; Ma, L.; Bruce, P.G.; Xia, Y.; ACS Applied Materials and Interfaces (Sept 2020) https://doi.org/10.1021/acsami.0c12747  
  39. Bio-based and Degradable Block Polyester Pressure-Sensitive Adhesives; Chen, T.T.D.; Carrodeguas, L.P.; Sulley, G.S.; Gregory, G.L.; Williams, C.K.; Angewandte Chemie – International Edition (Sept 2020) https://doi.org/10.1002/anie.202006807  
  40. Fabrication of Li1+xAlxGe2-x(PO4)3 thin films by sputtering for solid electrolytes; Mousavi, T.; Chen, X.; Doerrer, C.; Jagger, B.; Speller, S.C.; Grovenor, C.R.M.; Solid State Ionics (Oct 2020) https://doi.org/10.1016/j.ssi.2020.115397  
  41. Electrochemo-Mechanical Properties of Red Phosphorus Anodes in Lithium, Sodium, and Potassium Ion Batteries; Capone, I.; Aspinall, J.; Darnbrough, E.; Zhao, Y.; Wi, T.-U.; Lee, H.-W.; Pasta, M.; Matter (Oct 2020) https://doi.org/10.1016/j.matt.2020.09.017  
  42. Imaging Sodium Dendrite Growth in All-Solid-State Sodium Batteries Using 23Na T2-Weighted Magnetic Resonance Imaging; Rees, G.J.; Spencer Jolly, D.; Ning, Z.; Marrow, T.J.; Pavlovskaya, G.E.; Bruce, P.G.; Angewandte Chemie – International Edition (Oct 2020) https://doi.org/10.1002/anie.202013066  
  43. High elasticity, chemically recyclable, thermoplastics from bio-based monomers: Carbon dioxide, limonene oxide and ϵ-decalactone; Carrodeguas, L.P.; Chen, T.T.D.; Gregory, G.L.; Sulley, G.S.; Williams, C.K.; Green Chemistry (Nov 2020) https://doi.org/10.1039/d0gc02295k  
  44. Li1.5La1.5 MO6 (M = W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries; Amores, M.; El-Shinawi, H.; McClelland, I.; Yeandel, S.R.; Baker, P.J.; Smith, R.I.; Playford, H.Y.; Goddard, P.; Corr, S.A.; Cussen, E.J.; Nature Communications (Dec 2020) https://doi.org/10.1038/s41467-020-19815-5  
  45. The Earth Mover’s Distance as a Metric for the Space of Inorganic Compositions; Hargreaves, C.J.; Dyer, M.S.; Gaultois, M.W.; Kurlin, V.A.; Rosseinsky, M.J.; Chemistry of Materials (Dec 2020) https://doi.org/10.1021/acs.chemmater.0c03381 
  46. 3D Imaging of Lithium Protrusions in Solid-State Lithium Batteries using X-Ray Computed Tomography; Hao, S.; Bailey, J.J.; Iacoviello, F.; Bu, J.; Grant, P.S.; Brett, D.J.L.; Shearing, P.R.; Advanced Functional Materials (Dec 2020) https://doi.org/10.1002/adfm.202007564 
  47. Carbon-emcoating architecture boosts lithium storage of Nb2O5; Ji, Q.; Xu, Z.; Gao, X.; Cheng, Y.-J.; Wan, X.; Zuo, X.; Chen, G.Z.; Hu, B.; Zhu, J.; Bruce, P.G.; Xia, Y.; Science China Materials (Dec 2020) https://doi.org/10.1007/s40843-020-1532-0 
  48. In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation; McClelland, I.; Booth, S.G.; El-Shinawi, H.; Johnston, B.I.J.; Clough, J.; Guo, W.; Cussen, E.J.; Baker, P.J.; Corr, S.A.; ACS Applied Energy Materials (Jan 2021) https://doi.org/10.1021/acsaem.0c02722 (See also FutureCat)   
  49. Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy; Gong, C.; Pu, S.D.; Gao, X.; Yang, S.; Liu, J.; Ning, Z.; Rees, G.J.; Capone, I.; Pi, L.; Liu, B.; Hartley, G.O.; Fawdon, J.; Luo, J.; Pasta, M.; Grovenor, C.R.M.; Bruce, P.G.; Robertson, A.W.; Advanced Energy Materials (Jan 2021) https://doi.org/10.1002/aenm.202003118 
  50. Ordered LiNi0.5Mn1.5O4 Cathode in Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte: Importance of the Cathode-Electrolyte Interphase; Lee, H.J.; Brown, Z.; Zhao, Y.; Fawdon, J.; Song, W.; Lee, J.H.; Ihli, J.; Pasta, M.; Chemistry of Materials (Feb 2021) https://doi.org/10.1021/acs.chemmater.0c04014 
  51. The initiation of void growth during stripping of Li electrodes in solid electrolyte cells; Shishvan, S.S.; Fleck, N.A.; Deshpande, V.S.; Journal of Power Sources (March 2021) https://doi.org/10.1016/j.jpowsour.2020.229437 
  52. Li6SiO4Cl2: A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking; Morscher, A.; Dyer, M.S.; Duff, B.B.; Han, G.; Gamon, J.; Daniels, L.M.; Dang, Y.; Surta, T.W.; Robertson, C.M.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Chemistry of Materials (March 2021) https://doi.org/10.1021/acs.chemmater.1c00157 
  53. Thermodynamic factors for locally non-neutral, concentrated electrolytic fluids; Goyal, P.; Monroe, C.W.; Electrochimica Acta (March 2021) https://doi.org/10.1016/j.electacta.2020.137638 
  54. 2021 roadmap on lithium sulfur batteries; Robinson, J.B.; Xi, K.; Kumar, R.V.; Ferrari, A.C.; Au, H.; Titirici, M.M.; Puerto, A.P.; Kucernak, A.; Fitch, S.D.S.; Araez, N.G.; Brown, Z.L.; Pasta, M.; Furness, L.; Kibler, A.J.; Walsh, D.A.; Johnson, L.R.; Holc, C.; Newton, G.N.; Champness, N.R.; Markoulidis, F.; Crean, C.; Slade, R.C.T.; Andritsos, E.I.; Cai, Q.; Babar, S.; Zhang, T.; Lekakou, C.; Kulkarni, N.; Rettie, A.J.E.; Jervis, R.; Cornish, M.; Marinescu, M.; Offer, G.; Li, Z.; Bird, L.; Grey, C.P.; Chhowalla, M.; Lecce, D.D.; Owen, R.E.; Miller, T.S.; Brett, D.J.L.; Liatard, S.; Ainsworth, D.; Shearing, P.R.; JPhys Energy (March 2021) https://doi.org/10.1088/2515-7655/abdb9a (See also LiSTAR) 
  55. Tracking lithium penetration in solid electrolytes in 3D by in-situ synchrotron X-ray computed tomography; Hao, S.; Daemi, S.R.; Heenan, T.M.M.; Du, W.; Tan, C.; Storm, M.; Rau, C.; Brett, D.J.L.; Shearing, P.R.; Nano Energy (April 2021) https://doi.org/10.1016/j.nanoen.2021.105744 
  56. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells; Ning, Z.; Jolly, D.S.; Li, G.; De Meyere, R.; Pu, S.D.; Chen, Y.; Kasemchainan, J.; Ihli, J.; Gong, C.; Liu, B.; Melvin, D.L.R.; Bonnin, A.; Magdysyuk, O.; Adamson, P.; Hartley, G.O.; Monroe, C.W.; Marrow, T.J.; Bruce, P.G.; Nature Materials (April 2021) https://doi.org/10.1038/s41563-021-00967-8 
  57. Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes; House, R.A.; Marie, J.-J.; Park, J.; Rees, G.J.; Agrestini, S.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P.G.; Nature Communications (May 2021) https://doi.org/10.1038/s41467-021-23154-4 (See also CATMAT 
  58. Modeling Lithium Transport and Electrodeposition in Ionic-Liquid Based Electrolytes; Li, G.; Monroe, C.W.; Frontiers in Energy Research (May 2021) https://doi.org/10.3389/fenrg.2021.660081 
  59. Bulk O2 formation and Mg displacement explain O-redox in Na0.67Mn0.72Mg0.28O2; Boivin, E.; House, R.A.; Pérez-Osorio, M.A.; Marie, J.-J.; Maitra, U.; Rees, G.J.; Bruce, P.G.; Joule (May 2021) https://doi.org/10.1016/j.joule.2021.04.006 
  60. Temperature Dependence of Lithium Anode Voiding in Argyrodite Solid-State Batteries; Spencer Jolly, D.; Ning, Z.; Hartley, G.O.; Liu, B.; Melvin, D.L.R.; Adamson, P.; Marrow, J.; Bruce, P.G.; ACS Applied Materials and Interfaces (May 2021) https://doi.org/10.1021/acsami.1c06706 
  61. Development of sputtered nitrogen-doped Li1+xAlxGe2-x(PO4)3 thin films for solid state batteries; Mousavi, T.; Slattery, I.; Jagger, B.; Liu, J.; Speller, S.; Grovenor, C.; Solid State Ionics (June 2021) https://doi.org/10.1016/j.ssi.2021.115613 
  62. Characterising lithium-ion electrolytes via operando Raman microspectroscopy; Fawdon, J.; Ihli, J.; Mantia, F.L.; Pasta, M.; Nature Communications (June 2021) https://doi.org/10.1038/s41467-021-24297-0 (See also LiSTAR) 
  63. Direct Imaging of Oxygen Sub-lattice Deformation in Li-rich Cathode Material Using Electron Ptychography; Song, W.; Osorio, M.; Marie, J.; Liberti, E.; Luo, X.; O’Leary, C.; House, R.; Bruce, P.; Nellist, P. ; Microscopy and Microanalysis (July 2021) https://doi.org/10.1017/S1431927621009594  (See also CATMAT 
  64. 2021 roadmap for sodium-ion batteries; Tapia-Ruiz, N.; Armstrong, A.R.; Alptekin, H.; Amores, M.A.; Au, H.; Barker, J.; Boston, R.; Brant, W.R.; Brittain, J.M.; Chen, Y.; Chhowalla, M.; Choi, Y.-S.; Costa, S.I.R.; Ribadeneyra, M.C.; Cussen, S.A.; Cussen, E.J.; David, W.I.F.; Desai, A.V.; Dickson, S.A.M.; Eweka, E.I.; Forero-Saboya, J.D.; Grey, C.P.; Griffin, J.M.; Gross, P.; Hua, X.; Irvine, J.T.S.; Johansson, P.; Jones, M.O.; Karlsmo, M.; Kendrick, E.; Kim, E.; Kolosov, O.V.; Li, Z.; Mertens, S.F.L.; Mogensen, R.; Monconduit, L.; Morris, R.E.; Naylor, A.J.; Nikman, S.; O’Keefe, C.A.; Ould, D.M.C.; Palgrave, R.G.; Poizot, P.; Ponrouch, A.; Renault, S.; Reynolds, E.M.; Rudola, A.; Sayers, R.; Scanlon, D.O.; Sen, S.; Seymour, V.R.; Silván, B.; Sougrati, M.T.; Stievano, L.; Stone, G.S.; Thomas, C.I.; Titirici, M.-M.; Tong, J.; Wood, T.J.; Wright, D.S.; Younesi, R.; JPhys Energy (July 2021) https://doi.org/10.1088/2515-7655/ac01ef (See also Nexgenna) 
  65. High Energy Density Single-Crystal NMC/Li6PS5Cl Cathodes for All-Solid-State Lithium-Metal Batteries; Doerrer, C.; Capone, I.; Narayanan, S.; Liu, J.; Grovenor, C.R.M.; Pasta, M.; Grant, P.S.; ACS Applied Materials and Interfaces (July 2021) https://doi.org/10.1021/acsami.1c07952 
  66. Li2NiO2F a New Oxyfluoride Disordered Rocksalt Cathode Material; Xu, X.; Pi, L.; Marie, J.-J.; Rees, G.J.; Gong, C.; Pu, S.; House, R.A.; Robertson, A.W.; Bruce, P.G.; Journal of the Electrochemical Society (Aug 2021) https://doi.org/10.1149/1945-7111/ac1be1 (See also CATMAT) 
  67. Polymorph of LiAlP2O7: Combined Computational, Synthetic, Crystallographic, and Ionic Conductivity Study; Shoko, E.; Dang, Y.; Han, G.; Duff, B.B.; Dyer, M.S.; Daniels, L.M.; Chen, R.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Inorganic Chemistry (Aug 2021) https://doi.org/10.1021/acs.inorgchem.1c01396 
  68. A red phosphorus-graphite composite as anode material for potassium-ion batteries; Capone, I.; Aspinall, J.; Lee, H.J.; Xiao, A.W.; Ihli, J.; Pasta, M.; Materials Today Energy (Sept 2021) https://doi.org/10.1016/j.mtener.2021.100840 
  69. Transport of secondary carriers in a solid lithium-ion conductor; Li, G.; Monroe, C.W.; Electrochimica Acta (Sept 2021) https://doi.org/10.1016/j.electacta.2021.138563 
  70. Catalytic Synergy Using Al(III) and Group 1 Metals to Accelerate Epoxide and Anhydride Ring-Opening Copolymerizations; Diment, W.T.; Gregory, G.L.; Kerr, R.W.F.; Phanopoulos, A.; Buchard, A.; Williams, C.K.; ACS Catalysis (Sept 2021) https://doi.org/10.1021/acscatal.1c04020 
  71. Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry; Vasylenko, A.; Gamon, J.; Duff, B.B.; Gusev, V.V.; Daniels, L.M.; Zanella, M.; Shin, J.F.; Sharp, P.M.; Morscher, A.; Chen, R.; Neale, A.R.; Hardwick, L.J.; Claridge, J.B.; Blanc, F.; Gaultois, M.W.; Dyer, M.S.; Rosseinsky, M.J.; Nature Communications (Sept 2021) https://doi.org/10.1038/s41467-021-25343-7 
  72. Optimization of a potential manufacturing process for thin-film LiCoO2 cathodes; Turrell, S.J.; Zekoll, S.; Liu, J.; Grovenor, C.R.M.; Speller, S.C.; Thin Solid Films (Oct 2021) https://doi.org/10.1016/j.tsf.2021.138888 
  73. Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability; Han, G.; Vasylenko, A.; Neale, A.R.; Duff, B.B.; Chen, R.; Dyer, M.S.; Dang, Y.; Daniels, L.M.; Zanella, M.; Robertson, C.M.; Kershaw Cook, L.J.; Hansen, A.-L.; Knapp, M.; Hardwick, L.J.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Journal of the American Chemical Society (Oct 2021) https://doi.org/10.1021/jacs.1c07874 
  74. The case for fluoride-ion batteries; Xiao, A.W.; Galatolo, G.; Pasta, M.; Joule (Oct 2021) https://doi.org/10.1016/j.joule.2021.09.016 (See also LiSTAR) 
  75. Structural complexity in Prussian blue analogues; Cattermull, J.; Pasta, M.; Goodwin, A.L.; Materials Horizons (Oct 2021) https://doi.org/10.1039/d1mh01124c (See also LiSTAR) 
  76. Li4.3AlS3.3Cl0.7: A Sulfide-Chloride Lithium Ion Conductor with Highly Disordered Structure and Increased Conductivity; Gamon, J.; Dyer, M.S.; Duff, B.B.; Vasylenko, A.; Daniels, L.M.; Zanella, M.; Gaultois, M.W.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Chemistry of Materials (Nov 2021) https://doi.org/10.1021/acs.chemmater.1c02751 
  77. Detection of trapped molecular O2in a charged Li-rich cathode by Neutron PDF; House, R.A.; Playford, H.Y.; Smith, R.I.; Holter, J.; Griffiths, I.; Zhou, K.-J.; Bruce, P.G.; Energy and Environmental Science (Dec 2021) https://doi.org/10.1039/d1ee02237g (See also CATMAT 
  78. A compliant and low-expansion 2-phase micro-architectured material, with potential application to solid-state Li-ion batteries; Zhao, Y.; Deshpande, V.S.; Fleck, N.A.; Journal of the Mechanics and Physics of Solids (Jan 2022) https://doi.org/10.1016/j.jmps.2021.104683 (See also FutureCat 
  79. Gently does it!: in situ preparation of alkali metal-solid electrolyte interfaces for photoelectron spectroscopy; Gibson, J.S.; Narayanan, S.; Swallow, J.E.N.; Kumar-Thakur, P.; Pasta, M.; Lee, T.-L.; Weatherup, R.S.; Faraday Discussions (Jan 2022) https://doi.org/10.1039/d1fd00118c (See also LiSTAR, Characterisation 
  80. TiO2 as Second Phase in Na3Zr2Si2PO12 to Suppress Dendrite Growth in Sodium Metal Solid-State Batteries; Gao, Z.; Yang, J.; Li, G.; Ferber, T.; Feng, J.; Li, Y.; Fu, H.; Jaegermann, W.; Monroe, C.W.; Huang, Y.; Advanced Energy Materials (Jan 2022) https://doi.org/10.1002/aenm.202103607 
  81. Insights into the Transport and Thermodynamic Properties of a Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte for Battery Applications; Fawdon, J.; Rees, G.J.; La Mantia, F.; Pasta, M.; Journal of Physical Chemistry Letters (Feb 2022) https://doi.org/10.1021/acs.jpclett.1c04246 (See also LiSTAR) 
  82. Solid-state lithium battery cathodes operating at low pressures; Gao, X.; Liu, B.; Hu, B.; Ning, Z.; Jolly, D.S.; Zhang, S.; Perera, J.; Bu, J.; Liu, J.; Doerrer, C.; Darnbrough, E.; Armstrong, D.; Grant, P.S.; Bruce, P.G.; Joule (March 2022) https://doi.org/10.1016/j.joule.2022.02.008 
  83. Exploiting Sodium Coordination in Alternating Monomer Sequences to Toughen Degradable Block Polyester Thermoplastic Elastomers; Gregory, G.L.; Williams, C.K.; Macromolecules (March 2022) https://doi.org/10.1021/acs.macromol.2c00068 
  84. Cation Disorder and Large Tetragonal Supercell Ordering in the Li-Rich Argyrodite Li7Zn0.5SiS6; Leube, B.T.; Collins, C.M.; Daniels, L.M.; Duff, B.B.; Dang, Y.; Chen, R.; Gaultois, M.W.; Manning, T.D.; Blanc, F.; Dyer, M.S.; Claridge, J.B.; Rosseinsky, M.J.; Chemistry of Materials (April 2022) https://doi.org/10.1021/acs.chemmater.2c00320 
  85. In situ and operando characterisation of Li metal – Solid electrolyte interfaces; Narayanan, S.; Gibson, J.S.; Aspinall, J.; Weatherup, R.S.; Pasta, M.; Current Opinion in Solid State and Materials Science (April 2022) https://doi.org/10.1016/j.cossms.2021.100978 
  86. Li-ion conductivity in Li2OHCl1−xBrx solid electrolytes: grains, grain boundaries and interfaces; Lee, H.J.; Darminto, B.; Narayanan, S.; Diaz-Lopez, M.; Xiao, A.W.; Chart, Y.; Lee, J.H.; Dawson, J.A.; Pasta, M.; Journal of Materials Chemistry A (April 2022) https://doi.org/10.1039/d2ta01462a 
  87. Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries; Jolly, D.S.; Melvin, D.L.R.; Stephens, I.D.R.; Brugge, R.H.; Pu, S.D.; Bu, J.; Ning, Z.; Hartley, G.O.; Adamson, P.; Grant, P.S.; Aguadero, A.; Bruce, P.G.; Inorganics (April 2022) https://doi.org/10.3390/inorganics10050060 
  88. Effect of current density on the Li – Li6PS5Cl solid electrolyte interphase; Narayanan, S.; Ulissi, U.; Gibson, J.S.; Chart, Y.; Weatherup, R.S.; Pasta, M.; ChemRxiv (April 2022) https://doi.org/10.26434/chemrxiv-2022-9jcht 
  89. Direct imaging of oxygen shifts associated with the oxygen redox of Li-rich layered oxides; Song, W.; Pérez-Osorio, M.A.; Marie, J.-J.; Liberti, E.; Luo, X.; O’Leary, C.; House, R.A.; Bruce, P.G.; Nellist, P.D.; Joule (May 2022) https://doi.org/10.1016/j.joule.2022.04.008 (See also CATMAT 
  90. Origin of the High Specific Capacity in Sodium Manganese Hexacyanomanganate; Hurlbutt, K.; Giustino, F.; Volonakis, G.; Pasta, M.; Chemistry of Materials (May 2022) https://doi.org/10.1021/acs.chemmater.1c04167 
  91. The Role of the Reducible Dopant in Solid Electrolyte-Lithium Metal Interfaces; McClelland, I.; El-Shinawi, H.; Booth, S.G.; Regoutz, A.; Clough, J.; Altus, S.; Cussen, E.J.; Baker, P.J.; Cussen, S.A.; Chemistry of Materials (May 2022) https://doi.org/10.1021/acs.chemmater.2c00379 
  92. Uncovering the Interplay of Competing Distortions in the Prussian Blue Analogue K2Cu[Fe(CN)6]; Cattermull, J.; Sada, K.; Hurlbutt, K.; Cassidy, S.J.; Pasta, M.; Goodwin, A.L.; Chemistry of Materials (May 2022) https://doi.org/10.1021/acs.chemmater.2c00288 
  93. Achieving Ultrahigh-Rate Planar and Dendrite-Free Zinc Electroplating for Aqueous Zinc Battery Anodes; Pu, S.D.; Gong, C.; Tang, Y.T.; Ning, Z.; Liu, J.; Zhang, S.; Yuan, Y.; Melvin, D.; Yang, S.; Pi, L.; Marie, J.-J.; Hu, B.; Jenkins, M.; Li, Z.; Liu, B.; Tsang, S.C.E.; Marrow, T.J.; Reed, R.C.; Gao, X.; Bruce, P.G.; Robertson, A.W.; Advanced Materials (May 2022) https://doi.org/10.1002/adma.202202552 
  94. Controlling Iron Versus Oxygen Redox in the Layered Cathode Na0.67Fe0.5Mn0.5O2: Mitigating Voltage and Capacity Fade by Mg Substitution; Boivin, E.; House, R.A.; Marie, J.-J.; Bruce, P.G.; Advanced Energy Materials (June 2022) https://doi.org/10.1002/aenm.202200702 
  95. High critical currents for dendrite penetration and voiding in potassium metal anode solid-state batteries; Spencer Jolly, D.; Perera, J.; Pu, S.D.; Melvin, D.L.R.; Adamson, P.; Bruce, P.G.; Journal of Solid State Electrochemistry (June 2022) https://doi.org/10.1007/s10008-022-05225-8 
  96. Optimizing the Crystallinity of Li1.5al0.5ge1.5(Po4)3 Oxide Electrolytes for the Enhanced Performance in All-Solid-State Lithium-Sulfur Batteries; Ma, Q.; Wang, J.; Sun, S.; Ma, M.; Yao, X.; Cai, Q.; Li, J.; Chen, X.; Wang, Z.; Zhuang, R.; Mu, P.; Liu, J.; Yan, W.; SSRN (July 2022) https://doi.org/10.2139/ssrn.4176039 (See also LiSTAR 
  97. Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers; Su, J.; Pasta, M.; Ning, Z.; Gao, X.; Bruce, P.G.; Grovenor, C.R.M.; Energy and Environmental Science (Aug 2022) https://doi.org/10.1039/d2ee01390h 
  98. Off-the-Shelf Gd(NO3)3as an Efficient High-Spin Metal Ion Polarizing Agent for Magic Angle Spinning Dynamic Nuclear Polarization; Elliott, S.J.; Duff, B.B.; Taylor-Hughes, A.R.; Cheney, D.J.; Corley, J.P.; Paul, S.; Brookfield, A.; Pawsey, S.; Gajan, D.; Aspinall, H.C.; Lesage, A.; Blanc, F.; Journal of Physical Chemistry B (Aug 2022) https://doi.org/10.1021/acs.jpcb.2c04184 
  99. Void growth within Li electrodes in solid electrolyte cells; Agier, J.A.B.; Shishvan, S.S.; Fleck, N.A.; Deshpande, V.S.; Acta Materialia (Aug 2022) https://doi.org/10.1016/j.actamat.2022.118303 
  100. LiNi0.5Mn1.5O4Cathode Microstructure for All-Solid-State Batteries; Lee, H.J.; Liu, X.; Chart, Y.; Tang, P.; Bae, J.-G.; Narayanan, S.; Lee, J.H.; Potter, R.J.; Sun, Y.; Pasta, M.; Nano Letters (Sept 2022) https://doi.org/10.1021/acs.nanolett.2c02426 
  101. Fabrication of thin solid electrolytes containing a small volume of an Li3OCl-type antiperovskite phase by RF magnetron sputtering; Turrell, S.J.; Lee, H.J.; Siniscalchi, M.; Narayanan, S.; Pasta, M.; Speller, S.C.; Grovenor, C.R.M.; Materials Advances (Sept 2022) https://doi.org/10.1039/d2ma00971d 
  102. Buffering Volume Change in Solid-State Battery Composite Cathodes with CO2-Derived Block Polycarbonate Ethers; Gregory, G.L.; Gao, H.; Liu, B.; Gao, X.; Rees, G.J.; Pasta, M.; Bruce, P.G.; Williams, C.K.; Journal of the American Chemical Society (Sept 2022) https://doi.org/10.1021/jacs.2c06138 
  103. Mechanics of lithium metal at the nanoscale; Aspinall, J.; Armstrong, D.E.J.; Pasta, M.; ChemRxiv (Oct 2022) https://doi.org/10.26434/chemrxiv-2022-drhkn-v2 (See also LiSTAR 
  104. Quantitative ion exchange reactions to form Li2xVac2-2xLa2Ti3O9+x defect layered perovskites from H2La2Ti3O10 via solid acid/base reaction; Thomas, C.I.; Yip, T.W.S.; Cussen, S.A.; Cussen, E.J.; Journal of Solid State Chemistry (Oct 2022) https://doi.org/10.1016/j.jssc.2022.123354 
  105. Block Poly(carbonate-ester) Ionomers as High-Performance and Recyclable Thermoplastic Elastomers; Gregory, G.L.; Sulley, G.S.; Kimpel, J.; Łagodzińska, M.; Häfele, L.; Carrodeguas, L.P.; Williams, C.K.; Angewandte Chemie – International Edition (Nov 2022) https://doi.org/10.1002/anie.202210748 
  106. Control of Ionic Conductivity by Lithium Distribution in Cubic Oxide Argyrodites Li6+ xP1- xSixO5Cl; Morscher, A.; Duff, B.B.; Han, G.; Daniels, L.M.; Dang, Y.; Zanella, M.; Sonni, M.; Malik, A.; Dyer, M.S.; Chen, R.; Blanc, F.; Claridge, J.B.; Rosseinsky, M.J.; Journal of the American Chemical Society (Dec 2022) https://doi.org/10.1021/jacs.2c09863 
  107. A database of experimentally measured lithium solid electrolyte conductivities evaluated with machine learning; Hargreaves, C.J.; Gaultois, M.W.; Daniels, L.M.; Watts, E.J.; Kurlin, V.A.; Moran, M.; Dang, Y.; Morris, R.; Morscher, A.; Thompson, K.; Wright, M.A.; Prasad, B.-E.; Blanc, F.; Collins, C.M.; Crawford, C.A.; Duff, B.B.; Evans, J.; Gamon, J.; Han, G.; Leube, B.T.; Niu, H.; Perez, A.J.; Robinson, A.; Rogan, O.; Sharp, P.M.; Shoko, E.; Sonni, M.; Thomas, W.J.; Vasylenko, A.; Wang, L.; Rosseinsky, M.J.; Dyer, M.S.; npj Computational Materials (Jan 2023) https://doi.org/10.1038/s41524-022-00951-z 
  108. Engineering Solution-Processed Non-Crystalline Solid Electrolytes for Li Metal Batteries; Vadhva, P.; Gill, T.E.; Cruddos, J.H.; Said, S.; Siniscalchi, M.; Narayanan, S.; Pasta, M.; Miller, T.S.; Rettie, A.J.E.; Chemistry of Materials (Feb 2023) https://doi.org/10.1021/acs.chemmater.2c03071 (See also LiSTAR) 
  109. Modelling and experimental investigation of Nb2O5 as a high-rate battery anode material; Lin, J.; Zhao, S.; Tranter, T.G.; Zhang, Z.; Peng, F.; Brett, D.; Jervis, R.; Shearing, P.R.; Electrochimica Acta (March 2023) https://doi.org/10.1016/j.electacta.2023.141983 
  110. Structural changes in the silver-carbon composite anode interlayer of solid-state batteries; Spencer-Jolly, D.; Agarwal, V.; Doerrer, C.; Hu, B.; Zhang, S.; Melvin, D.L.R.; Gao, H.; Gao, X.; Adamson, P.; Magdysyuk, O.V.; Grant, P.S.; House, R.A.; Bruce, P.G.; Joule (March 2023) https://doi.org/10.1016/j.joule.2023.02.001 
  111. Dendrite initiation and propagation in lithium metal solid-state batteries; Ning, Z.; Li, G.; Melvin, D.L.R.; Chen, Y.; Bu, J.; Spencer-Jolly, D.; Liu, J.; Hu, B.; Gao, X.; Perera, J.; Gong, C.; Pu, S.D.; Zhang, S.; Liu, B.; Hartley, G.O.; Bodey, A.J.; Todd, R.I.; Grant, P.S.; Armstrong, D.E.J.; Marrow, T.J.; Monroe, C.W.; Bruce, P.G.; Nature (June 2023) https://doi.org/10.1038/s41586-023-05970-4 
  112. Elastic and plastic mechanical properties of lithium measured by nanoindentation; Darnbrough, E.; Aspinall, J.; Pasta, M.; Armstrong, D.E.J.; Materials and Design (Aug 2023) https://doi.org/10.1016/j.matdes.2023.112200 
  113. Solid electrolyte interphases in lithium metal batteries; Jagger, B.; Pasta, M.; Joule (Sept 2023) https://doi.org/10.1016/j.joule.2023.08.007 (See also LiSTAR) 
  114. The strength of a constrained lithium layer; Stallard, J.C.; Vema, S.; Grey, C.P.; Deshpande, V.S.; Fleck, N.A.; Acta Materialia (Sept 2023) https://doi.org/10.1016/j.actamat.2023.119313 (See also FutureCat, Degradation